3856
L. F. Silva, Jr. et al.
PAPER
phy (10% EtOAc in hexanes) to afford 16 (0.0760 g, 85%);
colorless oil.
Acknowledgment
We wish to thank FAPESP and CNPq for financial support. We also
thank Prof. Helena M. C. Ferraz for fruitful discussions.
IR (film): 2977, 1746, 1337, 1160, 1099, 1059 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.63 (s, 9 H), 1.98–2.26 (m, 2 H),
3.31–3.39 (m, 1 H), 3.39 (s, 3 H), 3.42 (s, 3 H), 3.48–3.58 (m, 2 H),
4.35 (d, J = 7.4 Hz, 1 H), 6.51 (d, J = 3.8 Hz, 1 H), 7.34 (s, 2 H),
7.49 (d, J = 3.8 Hz, 1 H).
References
(1) For some examples concerning the isolation of C2–C3 fused
cycloalkylindoles, see: (a) Ondeyka, J. G.; Helms, G. L.;
Hensens, O. D.; Goetz, M. A.; Zink, D. L.; Tsipouras, A.;
Shoop, W. L.; Slayton, L.; Dombrowski, A. W.; Polishook,
J. D.; Ostlind, D. A.; Tsou, N. N.; Ball, R. G.; Singh, S. B. J.
Am. Chem. Soc. 1997, 119, 8809. (b) Kato, L.; Braga, R.
M.; Koch, I.; Kinoshita, L. S. Phytochemistry 2002, 60, 315.
(c) Singh, S. B.; Ondeyka, J. G.; Jayasuriya, H.; Zink, D. L.;
Ha, S. N.; Dahl-Roshak, A.; Greene, J.; Kim, J. A.; Smith,
M. M.; Shoop, W.; Tkacz, J. S. J. Nat. Prod. 2004, 67, 1496.
(d) Carrol, A. R.; Hyde, E.; Smith, J.; Quinn, R. J.; Guymer,
G.; Forster, P. I. J. Org. Chem. 2005, 70, 1096.
(2) For some examples concerning the synthesis of C2–C3 fused
cycloalkylindoles, see: (a) Giannini, G.; Marzi, M.; Moretti,
G. P.; Penco, S.; Tinti, M. O.; Pesci, S.; Lazzaro, F.; De
Angelis, F. Eur. J. Org. Chem. 2004, 2411. (b) Maertens,
F.; Van den Bogaert, A.; Compernolle, F.; Hoornaert, G. J.
Eur. J. Org. Chem. 2004, 4648. (c) Smith, A. B. III.; Kurti,
L.; Davulcu, A. H. Org. Lett. 2006, 8, 2167. (d) Sturino, C.
F.; Lachance, N.; Boyd, M.; Berthelette, C.; Labelle, M.; Li,
L.; Roy, B.; Scheigetz, J.; Tsou, N.; Brideau, C.; Cauchon,
E.; Carriere, M.-C.; Denis, D.; Greig, G.; Kargman, S.;
Lamontagne, S.; Mathieu, M.-C.; Sawyer, N.; Slipetz, D.;
O’Neill, G.; Wang, Z.; Zamboni, R.; Metters, K. M.; Young,
R. N. Bioorg. Med. Chem. Lett. 2006, 16, 3043.
13C NMR (75 MHz, CDCl3): d = 27.4, 28.2, 33.3, 47.9, 53.0, 54.6,
83.2, 107.4, 107.6, 118.9, 120.9, 126.7, 130.4, 130.7, 132.4, 140.7,
149.3.
LRMS: m/z (%) = 331 (2, [M+]), 200 (9), 75 (100).
Anal. Calcd for C19H25NO4: C, 68.86; H, 7.60; N, 4.23. Found: C,
68.47; H, 7.31; N, 4.29.
1,6,7,8-Tetrahydro-6-(dimethoxymethyl)-1-tosylcyclopen-
ta[g]indole (17)
The reaction was performed as for 13, but using 14 (0.125 g, 0.389
mmol), TMOF (3 mL), and TTN·3H2O (0.182 g, 0.410 mmol, 1.1
equiv). The resultant solution was washed with H2O (20 mL), brine
(20 mL), and dried (MgSO4). The solvent was removed under re-
duced pressure and the residue was purified by flash chromatogra-
phy (30% EtOAc in hexanes) to afford 17 (0.140 g, 93%); colorless
oil.
IR (film): 3150, 2936, 1360, 1170, 1126, 1061 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.92–2.21 (m, 2 H), 2.34 (s, 3 H),
3.04–3.14 (m, 1 H), 3.25–3.35 (m, 4 H), 3.38 (s, 3 H), 3.41–3.48 (m,
1 H), 4.26 (d, J = 7.4 Hz, 1 H), 6.66 (d, J = 3.7 Hz, 1 H), 7.20 (d,
J = 8.5 Hz, 2 H), 7.35 (d, J = 3.7 Hz, 2 H), 7.56 (d, J = 8.3 Hz, 2 H),
7.66 (d, J = 3.7 Hz, 1 H).
13C NMR (75 MHz, CDCl3): d = 21.5, 27.4, 31.9, 47.9, 53.2, 54.5,
107.5, 108.8, 119.5, 121.5, 126.5, 128.3, 129.7, 131.5, 136.9, 141.2,
144.5.
(3) (a) Capon, R. J.; MacLeod, J. K.; Scammels, P. J.
Tetrahedron 1986, 42, 6545. (b) Herb, R.; Carrol, A. R.;
Yoshida, W. Y.; Scheuer, P. J.; Paul, V. J. Tetrahedron
1990, 46, 3089.
(4) Sawyer, J. S.; Beight, D. W.; Smith, E. C. R.; Snyder, D. W.;
Chastain, M. K.; Tielkin, R. L.; Hartley, L. W.; Carlson, D.
G. J. Med. Chem. 2005, 48, 893.
LRMS: m/z (%)= 353 (74, [M+ – MeOH]), 75 (100).
Anal. Calcd for C21H23NO4S: C, 65.43; H, 6.01; N, 3.63. Found: C,
65.76; H, 5.69; N, 3.47.
(5) (a) MacLeod, J. K.; Monahan, L. C. Tetrahedron Lett. 1988,
29, 391. (b) Muratake, H.; Natsume, M. Tetrahedron Lett.
1989, 30, 5771. (c) Muratake, H.; Watanabe, M.; Goto, K.;
Natsume, M. Tetrahedron 1990, 46, 4179. (d) MacLeod, J.
K.; Monahan, L. C. Aust. J. Chem. 1990, 43, 329.
Reactionoftert-Butyl-8,9-dihydrobenzo[g]indole-1-carboxylate
(13) in MeOH at 0 °C
The reaction was performed as for 3, but using 13 (0.0910 g, 0.340
mmol) in MeOH (2 mL), TTN·3H2O (0.165 g, 0.370 mmol, 1.1
equiv), and a reaction time of 5 min. The residue was purified by
flash chromatography (10% EtOAc in hexanes) affording 16
(0.0268 g, 24%; for spectral and analytical data, see above) and 18
(0.0540 g, 40%), both as colorless oils.
(e) Boger, D. L.; Zhang, M. J. Am. Chem. Soc. 1991, 113,
4230. (f) Muratake, H.; Mikawa, A.; Natsume, M.
Tetrahedron Lett. 1992, 33, 4595. (g) Muratake, H.; Seino,
T.; Natsume, M. Tetrahedron Lett. 1993, 34, 4815.
(h) Wiedenau, P.; Monse, B.; Blechert, S. Tetrahedron 1995,
51, 1167. (i) MacLeod, J. K.; Ward, A.; Willis, A. C. Aust. J.
Chem. 1998, 51, 177. (j) Jackson, S. K.; Banfield, S. C.;
Kerr, M. A. Org. Lett. 2005, 7, 1215. (k) Huntley, R. J.;
Funk, R. L. Org. Lett. 2006, 8, 3403. (l) Jackson, S. K.;
Kerr, M. A. J. Org. Chem. 2007, 72, 1405.
tert-Butyl-2,3-dimethoxy-6-(dimethoxymethyl)-1,2,3,6,7,8-
hexahydrocyclopenta[g]indole-1(6H)-carboxylate (18)
IR (film): 2934, 2829, 1721, 1455, 1374, 1198, 1062 cm–1.
1H NMR (300 MHz, CDCl3): d = 1.55 (s, 18 H), 1.71–1.82 (m, 1 H),
2.06–2.28 (m, 3 H), 2.63–2.82 (m, 2 H), 3.15–3.27 (m, 1 H), 3.32–
3.54 (m, 3 H), 3.366 (s, 6 H), 3.374 (s, 3 H), 3.39 (s, 3 H), 3.40 (s,
3 H), 3.45 (s, 3 H), 3.47 (s, 3 H), 3.48 (s, 3 H), 4.25 (s, 1 H), 4.27 (s,
1 H), 4.30 (d, J = 7.7 Hz, 1 H), 4.34 (d, J = 7.7 Hz, 1 H), 5.438 (s, 1
H), 5.443 (s, 1 H), 7.14–7.21 (m, 3 H), 7.26 (dd, J = 7.6, 0.9 Hz, 1
H).
13C NMR (75 MHz, CDCl3): d = 27.3, 28.3, 28.4, 31.5, 31.7, 47.2,
48.2, 52.7, 52.9, 53.5, 55.0, 55.6, 55.77, 55.81, 55.83, 81.6, 81.7,
83.1, 83.2, 95.8, 95.9, 106.7, 107.0, 120.7, 122.1, 124.37, 124.42,
128.5, 128.6, 134.0, 134.1, 138.99, 139.02, 146.9, 147.0, 152.9,
153,0.
(6) For some reviews concerning thallium(III) in organic
synthesis, see: (a) McKillop, A.; Taylor, E. C. In
Comprehensive Organometallic Chemistry, Vol. 7;
Wilkinson, G., Ed.; Pergamon Press: New York, 1982, 465.
(b) Ferraz, H. M. C.; Silva, L. F. Jr.; Vieira, T. O. Synthesis
1999, 2001. (c) Uemura, S. In Synthetic Reagents, Vol. 5;
Pizey, J. S., Ed.; Ellis Horwood: Chichester, 1983, 164.
(7) For some examples of rearrangement of olefins with TTN,
see: (a) McKillop, A.; Hunt, J. D.; Taylor, E. C.; Kienzle, F.
Tetrahedron Lett. 1970, 11, 5275. (b) McKillop, A.; Hunt,
J. D.; Kienzle, F.; Bigham, E.; Taylor, E. C. J. Am. Chem.
Soc. 1973, 95, 3635. (c) Taylor, E. C.; Chiang, C.-S.;
McKillop, A.; White, J. F. J. Am. Chem. Soc. 1976, 98,
LRMS: m/z (%) = 393 (2, [M+]), 75 (100).
Synthesis 2007, No. 24, 3851–3857 © Thieme Stuttgart · New York