V. K. Jain, E. R. T. Tiekink et al.
FULL PAPER
[14] Z. H. Zhang, W. S. Chin, J. J. Vittal, J. Phys. Chem. B 2004,
108, 18569–18574.
[15] G. Kedarnath, L. B. Kumbhare, V. K. Jain, P. P. Phadnis, M.
Nethaji, Dalton Trans. 2006, 2714–2718.
(b) Preparation of MS (M = Zn, Cd, Hg) Nanoparticles in Coordi-
nating Solvents: All experiments were performed similarly. A typical
experiment is described below:
In a three-necked flask fitted with a thermometer, HDA (hexadecy-
lamine) (5 g) was degassed at 120 °C under argon for 1 h with con-
tinuous stirring. The temperature was slowly raised to 225 °C and
stabilized at this temperature. To this, a solution of 3c (200 mg,
0.37 mmol) in dichloromethane (3 mL) was injected rapidly. The
temperature dropped to 195 °C and was slowly raised to 225 °C
and maintained at this temperature for 10 min. This hot solution
was maintained at 225 °C for 20 min and was cooled to 70 °C and
methanol was added to precipitate yellow CdS nanoparticles. The
yellow flocculate was given a thorough washing with methanol fol-
lowed by centrifuging and drying under vacuum.
[16] J. Cheon, D. S. Talaga, J. I. Zink, J. Am. Chem. Soc. 1997, 119,
163–168.
[17] D. Barreca, A. Gasparotto, C. Maragno, R. Seraglia, E. Tond-
ello, A. Venzo, V. Krishnan, H. Bertagnolli, Appl. Organomet.
Chem. 2005, 19, 59–67.
[18] a) M. Motevalli, P. O’Brien, J. R. Walsh, Polyhedron 1996, 15,
2801–2808; b) M. Lazell, P. O’Brien, Chem. Commun. 1999,
2041–2042; c) M. Chunggaze, M. A. Malik, P. O’Brien, J. Ma-
ter. Chem. 1999, 9, 2433–2438.
[19] Y. W. Jun, S. Min Lee, N.-J. Kang, J. Cheon, J. Am. Chem. Soc.
2001, 123, 5150–5151.
[20] C. Byron, M. A. Malik, P. O’Brien, A. P. J. White, D. J. Wil-
liams, Polyhedron 2000, 19, 211–215.
Similarly, experiments were carried out at different temperatures
and at different concentrations of precursor and coordinating sol-
vent. Metal sulfide nanoparticles prepared in ethylenediamine were
isolated by centrifuging rather than precipitating with methanol.
The particles thus separated were thoroughly washed with meth-
anol and dried. In case of experiments performed in ethylenedi-
amine, a sudden surge in temperature to 135–140 °C was observed
when the precursor (zinc, cadmium and mercury) was injected at
115 °C into ethylenediamine.
[21] I. Haiduc, D. B. Sowerby, S. F. Lu, Polyhedron 1995, 14, 3389–
3472.
[22] G. Hogarth, Prog. Inorg. Chem. 2005, 53, 71–561.
[23] E. R. T. Tiekink, I. Haiduc, Prog. Inorg. Chem. 2005, 54, 127–
319.
[24] E. R. T. Tiekink, CrystEngComm 2003, 5, 101–113.
[25] M. Bonamico, G. Dessy, V. Fares, L. Scaramuzza, J. Chem.
Soc., Dalton Trans. 1972, 2515–2517.
[26] D. J. Darensbourg, M. J. Adams, J. C. Yarbrough, Inorg. Chem.
Commun. 2002, 5, 38–41.
[27] H. Adams, A. C. Albeniz, N. A. Bailey, D. W. Bruce, A. S.
Cherodian, R. Dhillon, D. A. Dunmer, P. Espinet, J. L. Feijoo,
E. Lalinde, P. M. Maitlis, R. M. Richardson, G. Ungar, J. Ma-
ter. Chem. 1991, 1, 843–856.
Supporting Information (see also the footnote on the first page of
this article): XRD slides of nanoparticles of different colors, SAED
patterns and TEM images of ZnS, HgS nanoparticles.
[28] a) N. Kano, T. Kawashima, Top. Curr. Chem. 2005, 251, 141–
180; b) C. Furlani, M. L. Luciani, Inorg. Chem. 1968, 7, 1586–
1592.
[29] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Ver-
schoor, J. Chem. Soc., Dalton Trans. 1984, 1349–1356.
[30] International Center for Diffraction data, JCPDS File No. 80–
0020, 1997.
Acknowledgments
We thank Drs. T. Mukherjee and S. K. Kulshreshtha for encourage-
ment of this work. The authors are grateful to Dr. S. K. Gupta and
his group for EDAX measurements and Dr. V. K. Manchanda and
his group for providing microanalysis of these complexes.
[31] International Center for Diffraction data, JCPDS File No. 75–
1538, 1997.
[32] International Center for Diffraction data, JCPDS File No. 77–
2306, 1997.
[33] a) B. D. Cullity, Elements of X-ray diffraction, Addison-Wesley
Inc., London, 1978; b) N. Bhatt, R. Vaidya, S. G. Patel, A. R.
Jani, Bull. Mater. Sci. 2004, 27, 23–25.
[1] a) H. S. Nalwa, Encyclopedia of Nanoscience and Nanotechn-
ology (Eds.: P. Reiss, A. Pron), American Scientific Publishers,
USA, vol. 6, 2004, 587–604; b) A. P. Alivisatos, Science 1996,
271, 933–937.
[34] J. Z. Zhang, J. Phys. Chem. B 2000, 104, 7239–7253.
[35]
[36]
[37]
[38]
Y. Jun, J. Lee, J. Choi, J. Cheon, J. Phys. Chem. B 2005, 109,
[2] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature 1994,
14795–14806.
370, 354–357.
International Center for Diffraction data, JCPDS File No. 06–
0256, 1997.
C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc.
1993, 115, 8706–8715.
X. Peng, J. Wieckham, A. P. Alivisatos, J. Am. Chem. Soc.
1998, 120, 5343–5344.
[3] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hol-
lingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, Sci-
ence 2000, 290, 314–317.
[4] S. Coe, W. K. Woo, M. G. Bawendi, V. Bulovic, Nature 2002,
420, 800–803.
[5] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science 2002, 295,
2425–2427.
[7] M. Green, Angew. Chem. Int. Ed. 2004, 43, 4129–4131.
[8] W. C. W. Chan, S. M. Nie, Science 1998, 281, 2016–2018.
[9] P. V. Braun, P. Osenar, S. I. Stupp, Nature 1996, 380, 325–328.
[10] T. Trindade, P. O’Brien, N. L. Pickett, Chem. Mater. 2001, 13,
3843–3858.
[39]
[40]
P. S. Nair, G. D. Scholes, J. Mater. Chem. 2006, 16, 467–473.
P. S. Nair, T. Radhakrishnan, N. Revaprasadu, G. A. Kolawole,
P. O ’Brien, Chem. Commun. 2002, 564–565.
a) P. Beslin, A. Dlubala, G. Levesue, Synthesis 1987, 835–837;
b) R. W. Bost, W. J. Mattox, J. Am. Chem. Soc. 1930, 52, 332–
335.
P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S.
García-Granda, J. M. M. Smits, C. Smykalla, The DIRDIF
program system, Technical Report of the Crystallography, Lab-
oratory, University of Nijmegen, Nijmegen, The Netherlands,
1992.
[41]
[42]
[11] O. Masala, R. Seshadri, Annu. Rev. Mater. Res. 2004, 34, 41–
81.
[12] a) M. Yosef, A. K. Schaper, M. Froba, S. Schlecht, Inorg.
Chem. 2005, 44, 5890–5896; b) Y. W. Jun, J. E. Koo, J. Cheon,
Chem. Commun. 2000, 1243–1244.
[13] a) M. D. Nyman, M. J. Hampden-Smith, E. N. Duesler, Adv.
Mater. CVD 1996, 5, 171–174; b) M. D. Nyman, M. J.
Hampden-Smith, E. N. Duesler, Inorg. Chem. 1997, 36, 2218–
2224.
[43]
[44]
G. M. Sheldrick, SHELXL97. Program for crystal structure re-
finement. University of Göttingen, Germany, 1997.
T. Higashi, ABSCOR, Empirical Absorption Correction based
on Fourier Series Approximation, Rigaku Corporation, 3-9-12
Matsubara, Akishima, Japan, 1995.
1574
www.eurjic.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2007, 1566–1575