Please do not adjust margins
Page 5 of 5
Green Chemistry
Journal Name
COMMUNICATION
Notably, N-methyldiphenylamine did not work in our redox-
neutral photochemical system and majority of the starting
reactant was recovered. We rationally speculate that the
electron-withdrawing carboxylic acid group could probably
stabilize the charge polarized intermediate (B) that thereby
enables the electrocyclization process.
DOI: 10.1039/D0GC02789H
M. D. Eastgate and P. S. Baran, Science, 2016, 352, 801-805.
3. (a) L. J. Gooßen, G. Deng and L. M. Levy, Science, 2006, 313,
662-664; (b) P. J. Moon and R. J. Lundgren, ACS Catalysis,
2019, 10, 1742-1753; (c) Y. Wei, P. Hu, M. Zhang and W. Su,
Chem. Rev., 2017, 117, 8864-8907.
4. (a) G. J. P. Perry, J. M. Quibell, A. Panigrahi and I. Larrosa, J.
Am. Chem. Soc., 2017, 139, 11527-11536; (b) J. M. Quibell, G. J.
P. Perry, D. M. Cannas and I. Larrosa, Chem. Sci., 2018, 9,
3860-3865.
Conclusions
In summary we have developed a catalyst- and oxidant-free
decarboxylative photocyclization reaction of anthranilic acids
under ambient temperature and air conditions. This redox-
neutral protocol provides a mild alternative approach for the
construction of structurally significant carbazole compounds.
Generally moderate yields were obtained with tolerance of
some useful functional groups. Dehalogenation and
demethylation of some special substrates were unexpectedly
observed, which may inspire other designation of synthesis
through inner bond cleavage. Experimental results of some
mechanistic studies reveal a reaction cascade involving photo-
mediated 6π-electrocyclization and subsequent pyridine-
promoted formic acid elimination.
5. (a) J. Xuan and W. J. Xiao, Angew. Chem. Int. Ed., 2012, 51,
6828-6838; (b) C. K. Prier, D. A. Rankic and D. W. MacMillan,
Chem. Rev., 2013, 113, 5322-5363; (c) M. Reckenthäler and A.
G. Griesbeck, Adv. Synth. Catal., 2013, 355, 2727-2744; (d) M.
N. Hopkinson, B. Sahoo, J. L. Li and F. Glorius, Chem. Eur. J,
2014, 20, 3874-3886; (e) D. M. Schultz and T. P. Yoon, Science,
2014, 343, 1239176; (f) N. Corrigan, S. Shanmugam, J. Xu and
C. Boyer, Chem. Soc. Rev., 2016, 45, 6165-6212; (g) K. L. Skubi,
T. R. Blum and T. P. Yoon, Chem. Rev., 2016, 116, 10035-
10074; (h) M. Silvi and P. Melchiorre, Nature, 2018, 554, 41-49.
6. (a) S. Mukherjee, B. Maji, A. Tlahuext-Aca and F. Glorius, J.
Am. Chem. Soc., 2016, 138, 16200-16203; (b) N. P. Ramirez, I.
Bosque and J. C. Gonzalez-Gomez, Org. Lett., 2015, 17, 4550-
4553.
7. I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara,
A. L. Sobel and P. S. Baran, J. Am. Chem. Soc., 2010, 132,
13194–13196, 132, 13194-13196.
8. J. Chateauneuf, J. Lusztyk and K. U. Ingold, J. Am. Chem. Soc.,
1988, 110, 2886-2893.
Conflicts of interest
9. L. Candish, M. Freitag, T. Gensch and F. Glorius, Chem. Sci.,
2017, 8, 3618-3622.
There are no conflicts of interest to declare.
10. S. Kubosaki, H. Takeuchi, Y. Iwata, Y. Tanaka, K. Osaka, M.
Yamawaki, T. Morita and Y. Yoshimi, J. Org. Chem., 2020, 85,
5362-5369.
11. Z. Y. Hu, Y. Zhang, X. C. Li, J. Zi and X. X. Guo, Org. Lett.,
2019, 21, 989-992.
Acknowledgements
Support by the National Natural Science Foundation of China
(22071211), the Science and Technology Planning Project of Hunan
Province (2019RS2039), Hunan Provincial Natural Science
Foundation of China (2020JJ3032), and the Collaborative Innovation
Center of New Chemical Technologies for Environmental Benignity
and Efficient Resource Utilization is gratefully acknowledged.
12. For recent examples of sustainable photosynthesis, see: (a) Z.
Wang, Q. Liu, X. Ji, G.-J. Deng and H. Huang, ACS Catal., 2020,
10, 154-159; (b) Z. Wang, X. Ji, T. Han, G. J. Deng and H.
Huang, Adv. Synth. Catal., 2019, 361, 5643-5647; (c) Z. Wang,
X. Ji, J. Zhao and H. Huang, Green Chem., 2019, 21, 5512-5516;
(d) M. Fu, X. Ji, Y. Li, G.-J. Deng and H. Huang, Green Chem.,
2020, 22, DOI: 10.1039/d1030gc02269a; (e) X. Ji, Q. Liu, Z.
Wang, P. Wang, G.-J. Deng and H. Huang, Green Chem., 2020,
22, DOI: 10.1039/d1030gc01872d; (f) L. Lu, Y. Li and X.
Jiang, Green Chem., 2020, 22, DOI: 10.1039/D0GC02091E; (g)
K.-J. Liu, S. Jiang, L.-H. Lu, L.-L. Tang, S.-S. Tang, H.-S. Tang,
Z. Tang, W.-M. He and X. Xu, Green Chem., 2018, 20, 3038-
3043; (h) Y. Li, S. A. Rizvi, D. Hu, D. Sun, A. Gao, Y. Zhou, J.
Li and X. Jiang, Angew. Chem. Int. Ed. 2019, 58, 13499-13506;
(i) L.-Y. Xie, T.-G. Fang, J.-X. Tan, B. Zhang, Z. Cao, L.-H.
Yang and W.-M. He, Green Chem., 2019, 21, 3858-3863; (j) Y.
Lang, X. Peng, C.-J. Li and H. Zeng, Green Chem., 2020, 22,
DOI: 10.1039/D0GC01649G.
Notes and references
1. (a) N. Rodriguez and L. J. Goossen, Chem. Soc. Rev., 2011, 40,
5030-5048; (b) J. D. Weaver, A. Recio, 3rd, A. J. Grenning and J.
A. Tunge, Chem. Rev., 2011, 111, 1846-1913.
2. (a) R. S. J. Proctor, H. J. Davis and R. J. Phipps, Science, 2018,
360, 419–422; (b) M.-C. Fu, R. Shang, B. Zhao, B. Wang and Y.
Fu, Science, 2019, 363, 1429–1434; (c) C. Wang, M. Guo, R. Qi,
Q. Shang, Q. Liu, S. Wang, L. Zhao, R. Wang and Z. Xu, Angew.
Chem. Int. Ed., 2018, 57, 15841 –15846; (d) J. T. Edwards, R. R.
Merchant, K. S. McClymont, K. W. Knouse, T. Qin, L. R.
Malins, B. Vokits, S. A. Shaw, D. H. Bao, F. L. Wei, T. Zhou, M.
D. Eastgate and P. S. Baran, Nature, 2017, 545, 213-218; (e) J.
Cornella, J. T. Edwards, T. Qin, S. Kawamura, J. Wang, C. M.
Pan, R. Gianatassio, M. Schmidt, M. D. Eastgate and P. S. Baran,
J. Am. Chem. Soc., 2016, 138, 2174-2177; (f) A. Fawcett, J.
Pradeilles, Y. Wang, T. Mutsuga, E. L. Myers and V. K.
13. (a) H.-J. Knolker and K. R. Reddy, Chem. Rev., 2002, 102,
4303-4427; (b) A. W. Schmidt, K. R. Reddy and H. J. Knolker,
Chem. Rev., 2012, 112, 3193-3328.
14. (a) S. G. Modha, A. Pothig, A. Dreuw and T. Bach, J. Org.
Chem., 2019, 84, 1139-1153; (b) S. Pusch, D. Schollmeyer and T.
Opatz, Org. Lett., 2016, 18, 3043-3045; (c) M. Marin, V.
Lhiaubet-Vallet and M. A. Miranda, Org. Lett., 2012, 14, 1788.
This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins