C O M M U N I C A T I O N S
Scheme 1. Reaction Pathway
In summary, we have developed the first highly diastereo- and
enantioselective homoenolate addition to nitrones catalyzed by chiral
N-heterocyclic carbenes. This formal [3 + 3] addition delivers
γ-amino ester derivatives and is the first general and highly selective
strategy for the addition of homoenolate nucleophiles to nitrones.
Electron-rich and electron-poor aryl groups are suitable substituents
on the carbon of the nitrone, and alkyl and aryl groups are tolerated
on the R,â-unsaturated aldehyde. Scission of the N-O bond under
mild conditions results in the formation of γ-amino esters that
quickly close in the presence of acid to form γ-lactams in good
yields. N-Heterocyclic carbene catalysis is a powerful approach that
provides new directions for synthesis through innovative bond
construction.
Acknowledgment. Support for this work was generously
provided by NIGMS (RO1 GM73072), Abbott Laboratories,
Amgen, 3M, GlaxoSmithKline, AstraZeneca, and Boehringer
Ingelheim. Funding for the NU Analytical Services Laboratory has
been furnished in part by the NSF (CHE-9871268). We thank Dr.
William J. Morris for helpful discussions. K.A.S. is a Fellow of
the Sloan Foundation. T.E.R. is a recipient of a 2007-2008 ACS
Division of Organic Chemistry fellowship sponsored by Bristol-
Myers Squibb.
Table 2. Nitrone Reaction Scope
yielda
(%)
eeb
(%)
entry
R1
R2
Supporting Information Available: Experimental procedures and
spectral data for new compounds. This material is available free of
1
2
3
4
5
6
7
Ph
Ph
Ph
Ph
Ph
Ph
Ph
70 (5)
71 (6)
68 (7)
62 (8)
69 (9)
0
93
90
84
90
81
4-Me-C6H4
4-Br-C6H4
4-MeO-C6H4
2-naphthyl
cyclohexyl
Ph
References
(1) For selected reviews of cycloadditions beyond [4 + 2] and [3 + 2]
manifolds, see: (a) Rigby, J. H. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5,
p 617. (b) Hosomi, A. In ComprehensiVe Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, p 593. (c)
Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263-3283. (d)
Murakami, M. Angew. Chem., Int. Ed. 2003, 42, 718-720. (e) Wender,
P. A.; Gamber, G. G.; Williams, T. J. In Modern Rhodium-Catalyzed
Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany,
2005; pp 263-300.
4Cl-Ph
80 (10)
93
a Isolated yields. b Enantiomeric excess determined by HPLC Chiracel
OD-H or AD-H. Diastereomeric ratio determined by 1H NMR spectroscopy
(500 MHz).
Table 3. Aldehyde Reaction Scope
(2) (a) Bryans, J. S.; Wustrow, D. J. Med. Res. ReV. 1999, 19, 149-177. (b)
Cooper, J. R.; Bloom, F. E.; Roth, R. H. The Biochemical Basis of
Neuropharmacology; Oxford Press: Oxford, 2003. (c) Tassone, D. M.;
Boyce, E.; Guyer, J.; Nuzum, D. Clin. Ther. 2007, 29, 26-48.
(3) (a) Corey, E. J.; Reichard, G. A. J. Am. Chem. Soc. 1992, 114, 10677-
10678. (b) Masse, C. E.; Morgan, A. J.; Adams, J.; Panek, J. S. Eur. J.
Org. Chem. 2000, 2513-2528. (c) Fukuda, N.; Sasaki, K.; Sastry, T. V.
R. S.; Kanai, M.; Shibasaki, M. J. Org. Chem. 2006, 71, 1220-1225. (d)
Wardrop, D. J.; Bowen, E. G. Chem. Commun. 2005, 5106-5108. For a
review of lactacystin syntheses, see: (e) Shibasaki, M.; Kanai, M.; Fukuda,
N. Chem. Asian J. 2007, 2, 20-38.
(4) For SmI2-promoted nitrone additions to unsaturated esters/amides, see:
(a) Masson, G.; Cividino, P.; Py, S.; Valle´e, Y. Angew. Chem., Int. Ed.
2003, 42, 2265-2268. (b) Riber, D.; Skrydstrup, T. Org. Lett. 2003, 5,
229-231. For lithio-homoenolate additions to N-phenyl imines, see: (c)
Katritzky, A. R.; Feng, D. M.; Lang, H. Y. J. Org. Chem. 1997, 62, 706-
714. (d) Alonso, E.; Ramon, D. J.; Yus, M. Tetrahedron 1997, 53, 2641-
2652.
yielda
(%)
eeb
(%)
entry
R
1
2
3
4
5
4-Cl-C6H4
4-MeO-C6H4
2-naphthyl
Mec
78 (11)
72 (12)
73 (13)
73 (14)
64 (15)
90
89
94
94
92
c
C3H7
(5) (a) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905-908. (b) Phillips, E.
M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem., Int. Ed.
2007, 46, 3107-3110. (c) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc.
2007, 129, 5334-5335. (d) Wadamoto, M.; Phillips, E. M.; Reynolds, T.
E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098-10099.
(6) (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205-
6208. (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004,
126, 14370-14371. (c) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131-
3134. (d) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan, R.; Suresh, E.
Org. Lett. 2006, 8, 507-509. For an excellent recent review of NHC
catalysis, see: (e) Enders, D.; Niemeier, O.; Henseler, A. Chem. ReV.
2007, 107, 5606-5655.
(7) (a) Gothelf, K. V.; Jørgensen, K. A. Chem. ReV. 1998, 98, 863-909. (b)
Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 9874-9875. For recent examples of [3 + 3] formal cycload-
ditions of nitrones, see: (c) Young, I. S.; Kerr, M. A. Angew. Chem., Int.
Ed. 2003, 42, 3023-3026. (d) Sibi, M. P.; Ma, Z. H.; Jasperse, C. P. J.
Am. Chem. Soc. 2005, 127, 5764-5765. (e) Shintani, R.; Park, S.; Duan,
W.-L.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 5901-5903.
(8) The hydroxyl amine products are stable when stored at -20 °C, but slowly
decompose at 23 °C.
a Isolated yields. b Enantiomeric excess determined by HPLC Chiracel
OD-H or AD-H. c DBU used in place of Et3N.
â-position afford the desired γ-hydroxy amino esters with high
selectivity and good yields (entries 4 and 5).
With an efficient pathway to γ-hydroxy amino methyl esters,
we envisaged that cleavage of the N-O bond would facilitate clean
access to γ-amino esters (eq 2). The N-O bond is easily cleaved
under a hydrogen atmosphere in the presence of Pd(OH)2, and
subsequent exposure of the amino ester to aqueous HCl in methanol
provides the corresponding lactam 17 in 88% yield and 93% ee.10
(9) Relative and absolute configuration of 7 was determined by X-ray
crystallography; see Supporting Information for details. Additional ster-
eochemistry assigned by analogy.
(10) For a racemic synthesis of 17, see ref 4c.
JA710521M
9
J. AM. CHEM. SOC. VOL. 130, NO. 8, 2008 2417