Letters
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 4 723
Table 4. Evaluation of Derivatives Versus Mutant CCR2 Receptors
Glu291 pocket. Hence, the CCR2 affinity has been optimized
for these compounds without utilizing an interaction to Glu291.
This strategy has not been widely described, as nonbasic CCR2
antagonists are uncommon.
E291A
fold
change
T292A
fold
change
a
a
a
WT CCR2 IC50 E291A IC50
T292A IC50
(nM)
cmpd
(nM)
(nM)
10
14
22
268 (1)
4130 ( 1089 (2) 7847 (1)
7.5 ( 1.9 (3) 3.7 (1)
2117.2 (1)
7.9
1.9
0.5
NTb
NT
303.7 (1)
NT
NT
40.5
Acknowledgment. The authors thank Dr. Joel C. Barrish
for a critical review of the manuscript.
a IC50 values (n) are displayed as mean ( SD (n ) 2) and mean ( SEM
(n > 2). b NT ) not tested.
Supporting Information Available: Compound characterization
data for all target compounds and experimental details for the
representative synthesis of Scheme 2. This material is available
Scheme 2. Representative Synthesisa
References
(1) Charo, I. F.; Ransohoff, R. M. The many roles of chemokines and
chemokine receptors in inflammation. N. Eng. J. Med. 2006, 354, 610–
621.
(2) (a) Allen, S. J.; Crown, S. E.; Handel, T. M. Chemokine: Receptor
structure, interactions, and antagonism. Annu. ReV. Immunol. 2007,
25, 787–820. (b) Murphy, P. M.; Baggiolini, M.; Charo, I. F.; Hebert,
C. A.; Horuk, R.; Matsushima, K.; Miller, L. H.; Oppenheim, J. J.;
Power, C. A. International union of pharmacology. XXII. Nomencla-
ture for chemokine receptors. Pharmacol. ReV. 2000, 52, 145–176.
(3) Daly, C.; Rollins, B. J. Monocyte chemoattractant protein-1 (CCL2)
in inflammatory disease and adaptive immunity: Therapeutic op-
portunities and controversies. Microcirculation 2003, 10, 247–157.
(4) Feria, M.; Diaz-Gonzalez, F. The CCR2 receptor as a therapeutic target.
Expert Opin. Ther. Pat. 2006, 16, 49–57.
(5) Tak, P. P. Chemokine inhibition in inflammatory arthritis. Best Pract.
Res. Clin. Rheumatol. 2006, 20, 929–939.
(6) (a) Coll, B.; Alonso-Villaverde, C.; Joven, J. Monocyte chemoattractant
protein-1 and atherosclerosis: Is there room for an additional biomarker.
Clin. Chim. Acta 2007, 383, 21–29. (b) Peters, W.; Charo, I. F.
Involvement of chemokine receptor 2 and its ligand, monocyte
chemoattractant protein-1, in the development of atherosclerosis:
Lessons from knockout mice. Curr. Opin. Lipidol. 2001, 12, 175–
180.
(7) Mahad, D. J.; Ransohoff, R. M. The role of MCP-1 (CCL2) and CCR2
in multiple sclerosis and experimental autoimmune encephalomyelitis
(EAE). Semin. Immunol. 2003, 15, 23–32.
a Reagents and conditions: (a) BOC-ON, dioxane; (b) BOP, NMM, (3-
(trifluoromethyl)-benzamido) acetic acid, DMF, 0 °C; (c) TFA, CH2Cl2, 0
°C; (d) (i-Pr)2NEt, 2,4-dimethylbenzaldehyde, 4 Å MS, NaBH(OAc)3, THF;
(e) (i-Pr)2NEt, 37% formaldehyde, NaBH(OAc)3, THF; (f) BOP, NMM,
4-chloro-benzoic acid, DMF, 0 °C.
(8) Kamei, N.; Tobe, K.; Suzuki, R.; Ohsugi, M.; Watanabe, T.; Kubota,
N.; Ohtsuka-Kowatari, N.; Kumagai, K.; Sakamoto, K.; Kobayashi,
M.; Yamauchi, T.; Ueki, K.; Oishi, Y.; Nishimura, S.; Manabe, I.;
Hashimoto, H.; Ohnishi, Y.; Ogata, H.; Tokuyama, K.; Tsunoda, M.;
Ide, T.; Murakami, K.; Nagai, R.; Kadowaki, T. Overexpression of
monocyte chemoattractant protein-1 in adipose tissues causes mac-
rophage recruitment and insulin resistance. J. Biol. Chem. 2006, 281,
26602–26614.
(9) (a) Carter, P. H.; Cherney, R. J.; Mangion, I. K. Advances in the
discovery of cc chemokine receptor 2 antagonists. Annu. Rep. Med.
Chem. 2007, 42, 211–227. (b) Dawson, J.; Miltz, W.; Mir, A. K.;
Wiessner, C. Targeting monocyte chemoattractant protein-1 signalling
in disease. Expert Opin. Ther. Targets 2003, 7, 35–48.
compared to wild-type.11a Our examination of compound 22 in
the T292A mutant showed a very similar 40-fold shift. Hence,
although 22 did not utilize Glu291 in its binding, it did involve
the adjacent residue T292. This may suggest our antagonists
occupy a similar region of the receptor as that previously
described.11
A representative synthesis of these analogues is shown in
Scheme 2 for the compounds of Table 1. The purchased diamine
23 was selectively protected as the tert-butyl carbamate 24.20
The glycinamide side chain was then attached in one operation
via a coupling with BOP reagent to give 25. Carbamate removal
gave 26 and subsequent reductive amination gave the final target
3. The secondary amine was methylated via a second reductive
amination with formaldehyde to give 4. The amide 8 was
produced from amine 26 via a standard BOP coupling. The
compounds of Tables 2 and 3 were synthesized in an analogous
manner starting with racemic cis-(1R*,2S*)-cyclohexane-1,2-
diamine.
In summary, we have described the design, synthesis, and
evaluation of novel disubstituted cyclohexane derivatives as
potent CCR2 antagonists. SAR studies led to a series of nonbasic
antagonists, which displayed potent activity in two functional
assays. Exploring these antagonists further with site-directed
mutagenesis, we verified their lack of dependence on the key
receptor residue Glu291. Additional studies using the T292A
mutant and compound 22 suggested a placement within the
(10) Rosenkilde, M. M.; Schwartz, T. W. GluVII:06–A highly conserved
and selective anchor point for non-peptide ligands in chemokine
receptors. Curr. Top. Med. Chem. 2006, 6, 1319–1333.
(11) (a) Berkhout, T. A.; Blaney, F. E.; Bridges, A. M.; Cooper, D. G.;
Forbes, I. T.; Gribble, A. D.; Groot, P. H. E.; Hardy, A.; Ife, R. J.;
Kaur, R.; Moores, K. E.; Shillito, H.; Willetts, J.; Witherington, J.
CCR2: Characterization of the antagonist Binding site from a combined
receptor modeling/mutagenesis approach. J. Med. Chem. 2003, 46,
4070–4086. (b) Mirzadegan, T.; Diehl, F.; Ebi, B.; Bhakta, S.; Polsky,
I.; McCarley, D.; Mulkins, M.; Weatherhead, G. S.; Lapierre, J-M.;
Dankwardt, J.; Morgans, D., Jr.; Wilhelm, R.; Jarnagin, K. Identifica-
tion of the binding site for a novel class of CCR2b chemokine receptor
antagonists: Binding to a common chemokine receptor motif within
the helical bundle. J. Biol. Chem. 2000, 275, 25562–25571.
(12) (a) Moree, W. J.; Kataoka, K.; Ramirez-Weinhouse, M. M.; Shiota,
T.; Imai, M.; Sudo, M.; Tsutsumi, T.; Endo, N.; Muroga, Y.; Hada,
T.; Tanaka, H.; Morita, T.; Greene, J.; Barnum, D.; Saunders, J.; Kato,
Y.; Myers, P. L.; Tarby, C. M. Small molecule antagonists of the
CCR2b receptor. Part 2: Discovery process and initial structure-activity
relationships of diamine derivatives. Bioorg. Med. Chem. Lett. 2004,
14, 5413–5416. (b) Imai, M.; Shiota, T.; Kataoka, K.; Tarby, C. M.;
Moree, W. J.; Tsutsumi, T.; Sudo, M.; Ramirez-Weinhouse, M. M.;
Comer, D.; Sun, C.-M.; Yamagami, S.; Tanaka, H.; Morita, T.; Hada,
T.; Greene, J.; Barnum, D.; Saunders, J.; Myers, P. L.; Kato, Y.; Endo,
N. Small molecule inhibitors of the CCR2b receptor. Part 1: Discovery
and optimization of homopiperazine derivatives. Bioorg. Med. Chem.
Lett. 2004, 14, 5407–5411.