C O M M U N I C A T I O N S
Table 5. Modification Using Brominated Grignard Reagents
(b) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757-824. (c) Bercot, E. A.;
Rovis, T. J. Am. Chem. Soc. 2004, 126, 10248-10249.
(2) Frankland, E. Liebigs Ann. Chem. 1849, 71, 171-213.
(3) (a) Knochel, P.; Singer, R. D. Chem. ReV. 1993, 93, 2117-2188. (b)
Knochel, P.; Leuser, H.; Gong, L.-Z.; Perrone, S.; Kneisel, F. F. In The
Chemistry of Organozinc Compounds; Rappoport, Z., Marek, I., Eds.;
Wiley: Chichester, 2006; pp 287-393. (c) Knochel, P.; Millot, N.;
Rodriguez, A.; Tucker, C. E. Org. React. 2001, 58, 417-731 and
references therein.
(4) (a) Kitamura, M.; Miki, T.; Nakano, K.; Noyori, R. Bull. Chem. Soc. Jpn
2000, 73, 999-1014. (b) Rudolph, J.; Lormann, M.; Bolm, C.; Dahmen,
S. AdV. Synth. Catal. 2005, 347, 1361-1368. (c) Jeon, S.-J.; Li, H.; Garc´ıa,
C.; LaRochelle, L. K.; Walsh, P. J. J. Org. Chem. 2005, 70, 448-455.
(5) Even if MgCl2 and LiCl are hardly soluble in Et2O, they may affect
catalytic reactions. See ref 12.
yielda
eeb
(%)
entry
R
(%)
(6) (a) Boron residues significantly decreased yields when used in catalytic
addition to imines (unpublished results). (b) For an example of the
detrimental effect of boron residues on selectivities, see: Powell, N. A.;
Rychnovsky, S. D. J. Org. Chem. 1999, 64, 2026-2037.
(7) (a) Richey, H. G., Jr. Grignard Reagents: New DeVelopments; Wiley:
Chichester, 2000; p 418. (b) Wakefield, B. J. Organomagnesium Methods
in Organic Synthesis; Academic Press: London, 1995; p 249.
(8) (a) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.;
Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem., Int. Ed. 2003, 42,
4302-4320 and references therein. (b) Vu, V. A.; Marek, I.; Polborn,
K.; Knochel, P. Angew. Chem., Int. Ed. 2002, 41, 351-352. (c)
Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333-
3336.
1
Ph
Ph
Ph
Et
90 (18)
98 (18)
63 (18)
96 (16)
92 (16)
70 (19)
98
98
93
98
98
98
2c,d
3c,e
4
5f
6
Et
TBDMSO(CH2)4
a Isolated yield. b Enantiomeric excesses were determined by SFC on
chiral stationary phase. c Mixed diorganozinc was used. d EtZnPh was
generated from Et2Zn (0.75 equiv) and Ph2Zn (0.75 equiv). e EtZnPh was
generated from EtMgBr (1.5 equiv), PhMgBr (1.45 equiv), ZnCl2 (1.5
equiv), and 1,4-dioxane (10.5 equiv) (see ref 11). f EtMgBr (3.3 equiv) was
used in combination with NaOMe (3.6 equiv) and NaOBz (0.6 equiv).
(9) (a) Schlenk, W.; Schlenk, W., Jr. Ber. Dtsch. Chem. Ges. B 1929, 62,
920-924. (b) Noller, C. R.; White, W. R. J. Am. Chem. Soc. 1937, 59,
1354-1359.
(10) (a) Pajerski, A. D.; Chubb, J. E.; Fabicon, R. M.; Richey, H. G., Jr. J.
Org. Chem. 2000, 65, 2231-2235. (b) Krasovskiy, A.; Straub, B. F.;
Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 159-162.
herein.28 When necessary, the use of an excess of Grignard reagent
in combination with an insoluble and slow-to-react scavenger, such
as NaOBz,29 will eliminate the presence of organozinc alkoxide
(Table 5, entry 5).
Finally, these conditions were also applied to the addition to
â-nitrostyrene17 catalyzed with a copper•Me-BozPHOS complex
(eq 5).30
(11) (a) Seebach, D.; Behrendt, L.; Felix, D. Angew. Chem., Int. Ed. Engl.
1991, 30, 1008-1009. (b) von dem Bussche-Hu¨nnefeld, J. L.; Seebach,
D. Tetrahedron 1992, 48, 5719-5730.
(12) (a) Harutyunyan, S. R.; Lo´pez, F.; Browne, W. R.; Correa, A.; Pen˜a, D.;
Badorrey, R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem.
Soc. 2006, 128, 9103-9118. (b) van der Worp, H. Ph.D. Thesis, University
of Groningen, The Netherlands, 1997, and references therein. (c) See Table
5, entry 5.
(13) The addition to a Grignard reagent on a zinc salt potentially generates
several organic, organometallic, and inorganic species, some of which
are actually in equilibrium with each other: (a) Guijarro, A. The Chemistry
of Organozinc Compounds; Rappoport, Z., Marek, I., Eds.; Wiley:
Chichester, 2006; pp 193-236. (b) Fabicon, R. M.; Richey, H. G., Jr. J.
Chem. Soc., Dalton Trans. 2001, 783-788.
(14) Boezio, A. A.; Pytkowicz, J.; Coˆte´, A.; Charette, A. B. J. Am. Chem.
Soc. 2003, 125, 14260-14261.
(15) Goldsmith, P. J.; Teat, S. J.; Woodward, S. Angew. Chem., Int. Ed. 2005,
44, 2235-2237.
(16) As alkoxide chains became more hydrophobic, the solubility of magnesium
salts increased and, consequently, the catalysis was compromised.
(17) See Supporting Information for more details.
(18) (a) Shiner, V. J., Jr.; Beg, M. A. Inorg. Chem. 1975, 14, 157-158. (b)
Gut, R. HelV. Chim. Acta 1964, 47, 2262-2278.
In summary, we have exploited the weak solubility of magnesium
methoxide in order to synthesize diorganozinc reagents dissolved
in Et2O without undesired reaction byproducts. It represents an
attractive method to access both functionalized dialkylzinc and
diarylzinc reagents.31 Finally, the reagents produced show no change
in the efficiency of all tested asymmetric catalytic reactions in
comparison to purified reagents. The work presented herein is a
good complement to other methods since it focuses on asymmetric
catalysis and potentially improves the scope of already known
enantioselective reactions.
(19) The formation of a Na2[Zn2Cl2(OMe)4] or a [Zn2(Ome)3]Cl complex is
also possible. See ref 18.
(20) Kamienski, C. W.; Lewis, D. H. J. Org. Chem. 1965, 30, 3498-3504.
(21) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de Vries, A. H.
M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2620-2623.
(22) Li, K.; Alexakis, A. Angew. Chem., Int. Ed. 2006, 45, 7600-7603.
(23) Nugent, W. A. Chem. Commun. 1999, 1369-1370.
(24) (a) Kapoor, P. N.; Bhagi, A. K.; Sharma, H. K.; Kapoor, R. N. J.
Organomet. Chem. 1989, 369, 281-284. (b) Gupta, S.; Sharma, S.; Narula,
A. K. J. Organomet. Chem. 1993, 452, 1-4.
(25) Kim, J. G.; Walsh, P. J. Angew. Chem., Int. Ed. 2006, 45, 4175-4178.
(26) Dialkylzinc: (a) Lutz, C.; Jones, P.; Knochel, P. Synthesis 1999, 312-
316. (b) Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.;
Reddy, C. K. Angew. Chem., Int. Ed. Engl. 1997, 36, 1496-1498. (c)
Lipshutz, B. H.; Wood, M. R.; Tirado, R. J. Am. Chem. Soc. 1995, 117,
6126-6127. (d) Rimkus, A.; Sewald, N. Org. Lett. 2002, 4, 3289-3291.
Alkylalkenylzinc: (e) Dahmen, S.; Bra¨se, S. Org. Lett. 2001, 3, 4119-
4122. (f) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197-5200. (g)
Jeon, S.-J.; Chen, Y. K.; Walsh, P. J. Org. Lett. 2005, 7, 1729-1732.
Alkylarylzinc: (h) Bolm, C.; Hermanns, N.; Hildebrand, J. P.; Mun˜iz, K.
Angew. Chem., Int. Ed. 2000, 39, 3465-3467. Alkylakynylzinc: (i) Niwa,
S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1990, 937-943.
(27) The coordinate bonds of organozinc halide tetramers are weaker than those
of organozinc alkoxides.
Acknowledgment. This work was supported by NSERC
(Canada), Merck Frosst Canada Ltd., Boehringer Ingelheim (Canada)
Ltd., the Canada Research Chairs Program, the Canadian Founda-
tion for Innovation and the Universite´ de Montre´al. A.C. is grateful
to NSERC (ES D) for postgraduate fellowship, and to TD Bank
Financial Group.
(28) (a) Kitamura, M.; Okada, S.; Suga. S.; Noyori, R. J. Am. Chem. Soc.
1989, 111, 4028-4036. (b) Boersma, J.; Noltes, J. G. Tetrahedron Lett.
1966, 14, 1521-1525.
(29) In most cases, CH3CO2Na and CF3CO2Na also afford good results.
(30) Coˆte´, A.; Lindsay, V. N. G.; Charette, A. B. Org. Lett. 2007, 9, 85-87.
(31) Most methods to prepare highly functionalized Grignard reagents either
generate partially soluble salts and/or need salts as additive and/or use
complexing solvents. For any of these reasons, they are not compatible
with our new protocol to generate salt-free diorganozinc reagents.
Supporting Information Available: Additional results, tables,
experimental procedures, characterization data, and NMR spectra. This
acs.org.
References
(1) (a) Soai, K.; Kawasaki, T. In The Chemistry of Organozinc Compounds;
Rappoport, Z., Marek, I., Eds.; Wiley: Chichester, 2006; pp 555-593.
JA710864P
9
J. AM. CHEM. SOC. VOL. 130, NO. 9, 2008 2773