11644 J. Phys. Chem. B, Vol. 114, No. 35, 2010
Fo¨rster et al.
(21) Kawai, K.; Yoshida, H.; Takada, T.; Tojo, S.; Majima, T. Formation
of pyrene dimer radical cation at the internal site of oligodeoxynucleotides.
J. Phys. Chem. B 2004, 108, 13547–13550.
(22) Netzel, T. L.; Zhao, M.; Nafisi, K.; Headrick, J.; Sigman, M. S.;
Eaton, B. E. Photophysics of 2′-Deoxyuridine (Du) Nucleosides Covalently
Substituted with Either 1-Pyrenyl or 1-Pyrenoyl - Observation of Pyrene-
to-Nucleoside Charge-Transfer Emission in 5-(1-Pyrenyl)-Du. J. Am. Chem.
Soc. 1995, 117, 9119–9128.
(23) Manoharan, M.; Tivel, K. L.; Zhao, M.; Nafisi, K.; Netzel, T. L.
Base-Sequence Dependence of Emission Lifetimes for DNA Oligomers
and Duplexes Covalently Labeled with Pyrene - Relative Electron-
Transfer Quenching Efficiencies of a-Nucleoside, G-Nucleoside, C-
Nucleoside, and T-Nucleoside toward Pyrene. J. Phys. Chem. 1995, 99,
17461–17472.
(24) Amann, N.; Pandurski, E.; Fiebig, T.; Wagenknecht, H. A. A model
nucleoside for electron injection into DNA: 5-pyrenyl-2 ′-deoxyribose.
Angew. Chem., Int. Ed. 2002, 41, 2978–2980.
(25) Huber, R.; Fiebig, T.; Wagenknecht, H. A. Pyrene as a fluorescent
probe for DNA base radicals. Chem. Commun. 2003, 1878–1879.
(26) Fiebig, T.; Stock, K.; Lochbrunner, S.; Riedle, E. Femtosecond
charge transfer dynamics in artificial donor/acceptor systems: Switching
from adiabatic to nonadiabatic regimes by small structural changes. Chem.
Phys. Lett. 2001, 345, 81–88.
(27) Pandurski, E.; Fiebig, T. Femtosecond dynamics in directly linked
pyrenyl donor-acceptor systems: orbital control of optical charge transfer
in the excited state. Chem. Phys. Lett. 2002, 357, 272–278.
(28) Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K.; Shimizu, H.;
Inouye, M. Alkynylpyrenes as improved pyrene-based biomolecular probes
with the advantages of high fluorescence quantum yields and long
absorption/emission wavelengths. Chem.sEur. J. 2006, 12, 824–831.
(29) Gru¨newald, C.; Kwon, T.; Piton, N.; Fo¨rster, U.; Wachtveitl, J.;
Engels, J. W. RNA as scaffold for pyrene excited complexes. Bioorg. Med.
Chem. 2008, 16, 19–26.
(30) Fo¨rster, U.; Lommel, K.; Sauter, D.; Gru¨newald, C.; Engels, J. W.;
Wachtveitl, J. 2-(1-Ethynylpyrene)-adenosine as a folding probe for
RNA - Pyrene in or out. ChemBioChem 2010, 11, 664–672.
(31) Fo¨rster, U.; Gildenhoff, N.; Gru¨newald, C.; Engels, J. W.; Wacht-
veitl, J. Photophysics of 1-ethynylpyrene-modified RNA base adenine. J.
Lumin. 2009, 129, 1454–1458.
(32) Scaringe, S. A.; Wincott, F. E.; Caruthers, M. H. Novel RNA
synthesis method using 5′-O-silyl-2′-O-orthoester protecting groups. J. Am.
Chem. Soc. 1998, 120, 11820–11821.
(33) Khan, S. I.; Grinstaff, M. W. Palladium(0)-catalyzed modification
of oligonucleotides during automated solid-phase synthesis. J. Am. Chem.
Soc. 1999, 121, 4704–4705.
(34) Robins, M. J.; Uznanski, B. Nucleic-Acid Related-Compounds,
Conversions of Adenosine and Guanosine to 2,6-Dichloro, 2-Amino-6-
Chloro, and Derived Purine Nucleosides. Can. J. Chem. 1981, 59, 2601–
2607.
(35) Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.; Nomoto,
R.; Miyasaka, T.; Watanabe, Y.; Abiru, T. Nucleosides and Nucleotides
0.103. 2-Alkynyladenosines - a Novel Class of Selective Adenosine-A2
Receptor Agonists with Potent Antihypertensive Effects. J. Med. Chem.
1992, 35, 241–252.
(36) Matsuda, A.; Shinozaki, M.; Suzuki, M.; Watanabe, K.; Miyasaka,
T. A Convenient Method for the Selective Acylation of Guanine Nucleo-
sides. Synthesis 1986, 385–386.
(37) Lenz, M. O.; Huber, R.; Schmidt, B.; Gilch, P.; Kalmbach, R.;
Engelhard, M.; Wachtveitl, J. First steps of retinal photoisomerization in
proteorhodopsin. Biophys. J. 2006, 91, 255–262.
(38) Kovalenko, S. A.; Dobryakov, A. L.; Ruthmann, J.; Ernsting, N. P.
Femtosecond spectroscopy of condensed phases with chirped supercon-
tinuum probing. Phys. ReV. A 1999, 59, 2369–2384.
(39) Rist, M.; Amann, N.; Wagenknecht, H. A. Preparation of 1-ethy-
nylpyrene-modified DNA via Sonogashira-type solid-phase couplings and
characterization of the fluorescence properties for electron-transfer studies.
Eur. J. Org. Chem. 2003, 2498–2504.
(40) Seo, Y. J.; Rhee, H.; Joo, T.; Kim, B. H. Self-duplex formation of
an A(Py)-substituted oligodeoxyadenylate and its unique fluorescence. J. Am.
Chem. Soc. 2007, 129, 5244–5247.
channels is dependent on the position of the pyrene within
or outside the RNA strand. For intercalated pyrene, the S*
state fluorescence dominates the emission behavior. This
allows the conclusion that upon intercalation the S*CT state
is quenched selectively, due to the greater overlap of the
π-system of the excited molecule with the π-system of the
surrounding bases.
In the doubly modified compound, an additional fluorescence
lifetime of 18.7 ns could be detected and associated with pyrene
excimer emission. It was found, however, that the ultrafast
dynamics of the pyrene-base compound remains otherwise
nearly unchanged, which leads to the conclusion that formation
of the pyrene complex must occur from higher excited states
and thus within the time resolution of the system.
Acknowledgment. The authors thank Dr. Markus Braun for
helpful discussions and suggestions and the Cluster of Excel-
lence “Macromolecular Complexes” of the University of
Frankfurt for financial support.
References and Notes
(1) Valeur, B. Molecular Fluorescence; Wiley-VCH: Weinheim,
Germany, 2002.
(2) Haugland, R. P. Handbook of Fluorescent Probes and Research
Chemicals; Molecular Probes: Eugene, OR, 2002.
(3) Lakowizc, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.;
Springer: Berlin, 1999.
(4) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Inter-
science: London and New York, 1970.
(5) Nakajima, A. Intensity Enhancement Induced by Solute-Solvent
Interaction between Pyrene and Polar-Solvents. Spectrochim. Acta, Part A
1982, 38, 693–695.
(6) Nakajima, A. Fluorescence-Spectra of Pyrene in Chlorinated
Aromatic Solvents. J. Lumin. 1976, 11, 429–432.
(7) Nakajima, A. Fluorescence Lifetime of Pyrene in Different Solvents.
Bull. Chem. Soc. Jpn. 1973, 46, 2602–2604.
(8) Hara, K.; Ware, W. R. Influence of Solvent Perturbation on the
Radiative Transition-Probability from the B-1(Iu) State of Pyrene. Chem.
Phys. 1980, 51, 61–68.
(9) Fo¨rster, T. Excimers. Angew. Chem., Int. Ed. 1969, 8, 333–343.
(10) Nakajima, A. Intensity Enhancement Caused by Complex-Forma-
tion between Pyrene and Alcohols. Bull. Chem. Soc. Jpn. 1983, 56, 929–
930.
(11) Seo, Y. J.; Ryu, J. H.; Kim, B. H. Quencher-free, end-stacking
oligonucleotides for probing single-base mismatches in DNA. Org. Lett.
2005, 7, 4931–4933.
(12) Okamoto, A.; Kanatani, K.; Saito, I. Pyrene-labeled base-
discriminating fluorescent DNA probes for homogeneous SNP typing. J. Am.
Chem. Soc. 2004, 126, 4820–4827.
(13) Mahara, A.; Iwase, R.; Sakamoto, T.; Yamaoka, T.; Yamana, K.;
Murakami, A. Detection of acceptor sites for antisense oligonucleotides on
native folded RNA by fluorescence spectroscopy. Bioorg. Med. Chem. 2003,
11, 2783–2790.
(14) Trifonov, A.; Raytchev, M.; Buchvarov, I.; Rist, M.; Barbaric, J.;
Wagenknecht, H. A.; Fiebig, T. Ultrafast energy transfer and structural
dynamics in DNA. J. Phys. Chem. B 2005, 109, 19490–19495.
(15) Wanninger-Weiss, C.; Valis, L.; Wagenknecht, H. A. Pyrene-
modified guanosine as fluorescent probe for DNA modulated by charge
transfer. Bioorg. Med. Chem. 2008, 16, 100–106.
(16) Nakamura, M.; Murakami, Y.; Sasa, K.; Hayashi, H.; Yamana, K.
Pyrene-zipper array assembled via RNA duplex formation. J. Am. Chem.
Soc. 2008, 130, 6904–6905.
(17) Maie, K.; Nakamura, M.; Yamana, K. Photocurrent responses from
pyrene-modified RNA duplexes on gold surface. Nucleic Acids Symp Ser.
2007, 319–320.
(18) Filichev, V. V.; Astakhova, I. V.; Malakhov, A. D.; Korshun, V. A.;
Pedersen, E. B. 1-, 2-, and 4-Ethynylpyrenes in the Structure of Twisted
Intercalating Nucleic Acids: Structure, Thermal Stability, and Fluorescence
Relationship. Chem.sEur. J. 2008, 14, 9968–9980.
(41) Hwang, G. T.; Seo, Y. J.; Kim, S. J.; Kim, B. H. Fluorescent
oligonucleotide incorporating 5-(1-ethynylpyrenyl)2 ′-deoxyuridine: sequence-
specific fluorescence changes upon duplex formation. Tetrahedron Lett.
2004, 45, 3543–3546.
(42) Mayer, E.; Valis, L.; Wagner, C.; Rist, M.; Amann, N.; Wagen-
knecht, H. A. 1-ethynylpyrene as a tunable and versatile molecular beacon
for DNA. ChemBioChem 2004, 5, 865–868.
(43) Techert, S.; Schmatz, S.; Wiessner, A.; Staerk, H. Photophysical
characteristics of directly linked pyrene-dimethylaniline derivatives. J. Phys.
Chem. A 2000, 104, 5700–5710.
(19) Wang, G. J.; Bobkov, G. V.; Mikhailov, S. N.; Schepers, G.; Van
Aerschot, A.; Rozenski, J.; Van der Auweraer, M.; Herdewijn, P.; De Feyter,
S. Detection of RNA Hybridization by Pyrene-Labeled Probes. ChemBio-
Chem 2009, 10, 1175–1185.
(20) Silverman, S. K.; Cech, T. R. RNA tertiary folding monitored by
fluorescence of covalently attached pyrene. Biochemistry 1999, 38, 14224–
14237.
(44) Nakamura, M.; Fukunaga, Y.; Sasa, K.; Ohtoshi, Y.; Kanaori, K.;
Hayashi, H.; Nakano, H.; Yamana, K. Pyrene is highly emissive when