AuI and AgI Complexes and AgI Coordination Polymers
ported by bridging ligands in CuI and AgI systems are
exceedingly rare.7 Fackler and co-workers investigated the
importance of this metal-metal interaction in the photo-
physical properties in a range of Group 11 metal complexes
and described the emission energy due to metallophilicity
as a function of both metal-metal interactions and the nature
of the ligands.8
Scheme 1
In recent years, several strategies have been developed for
the construction of highly soluble polynuclear d10 metal
complexes using bi- or tridentate phosphorus based ligands.9
In particular, special emphasis has been focused on the use
of bis(diphenylphosphino)methane (dppm) with chalco-
genides.10 Although the transition metal chemistry of the
analogous short-bite aminobis(phosphine) ligand system,
X2PN(R)PX2, has been extensively studied,11 comparatively
little work has been reported on the use of these systems in
the synthesis of macromolecules and metallapolymers with
or without the assistance of other ligands such as pyridyl
ligands.12 Recently, we have reported novel tetranuclear
macrocycles and coordination polymers formed by the
interaction of the “short-bite” aminobis(phosphonite), PhN-
(P(OC6H4OMe-o)2)2 (PNP) (1), with CuI halides in the
presence of bipyridyl linkers.13 The coordination behavior
of 1 with copper(I) salts was similar to that of the PCP type
ligands, but the coordination geometries of the resulting
complexes were entirely different. In this context, we wanted
to investigate the coordinating behavior of 1 with AgI and
AuI metals as the short bite of the ligand can induce effective
metal-metal interactions. Further, the presence of pyridyl
ligands can alter the electronic properties as well. As a part
of our interest14 and that of others15 in the transition metal
chemistry of cyclic and acyclic diphosphazane ligands, we
describe in this paper the first examples of mixed-ligand AuI
and AgI complexes containing the “short-bite” aminobis-
(phosphonite), PhN(P(OC6H4OMe-o)2)2 (PNP) (1), and N-
hetero aromatic amines. This includes the formation of novel
tetra- and hexanuclear AuI macrocycles and AgI coordination
polymers. The crystal and molecular structures of several
bi- and tetranuclear complexes including a novel AgI
coordination polymer are also described.
(4) (a) Hunks, W. J.; Jennings, M. C.; Puddephatt, R. J. Inorg. Chem.
2002, 41, 4590–4598. (b) Schmidbaur, H. Nature 2001, 413, 31–32.
(c) Puddephatt, R. J. Coord. Chem. ReV. 2001, 216(217), 313–332.
(d) Gimeno, M. C.; Laguna, A. Chem. ReV. 1997, 97, 511–522. (e)
Schmidbaur, H. Chem. Soc. ReV. 1995, 24, 391–400.
(5) (a) Schmidbaur, H. Gold Bull. 2000, 33, 3–10. (b) Pyykkö, P.;
Mendizabal, F. Inorg. Chem. 1998, 37, 3018–3025. (c) Pyykkö, P.
Chem. ReV. 1997, 97, 597–636.
(6) O’Grady, E.; Kaltsoyannis, N. Phys. Chem. Chem. Phys. 2004, 6, 680–
687.
(7) (a) Zhang, J.-P.; Wang, Y.-B.; Huang, X.-C.; Lin, Y.-Y.; Chen, X.-
M. Chem. Eur. J. 2005, 11, 552–561. (b) Hermann, H. L.; Boche, G.;
Schwerdtfeger, P. Chem. Eur. J. 2001, 7, 5333–5342. (c) Che, C.-M.;
Tse, M.-C.; Chan, M. C. W.; Cheung, K.-K.; Phillips, D. L.; Leung,
K.-H. J. Am. Chem. Soc. 2000, 122, 2464–2468. (d) Poblet, J. M.;
Benard, M. Chem. Commun. 1998, 1179–1180. (e) Singh, K.; Long,
J. R.; Stavropoulos, P. J. Am. Chem. Soc. 1997, 119, 2942–2943. (f)
Siemeling, U.; Vorfeld, U.; Neumann, B.; Stammler, H. G. Chem.
Commun. 1997, 1723–1724.
Results and Discussion
AuI Chloride Derivatives. The reaction of the aminobis-
(phosphonite), PhN(P(OC6H4OMe-o)2)2 (hereafter referred
as PNP) (1), with [AuCl(SMe2)] in a 1:2 molar ratio leads
to the formation of a binuclear complex, [(AuCl)2(µ-PNP)]
(2), with the ligand exhibiting the bridging mode of
coordination. A similar reaction in equimolar ratio furnishes
a mono-coordinated complex, [(AuCl)(PNP)] (3), along with
a small quantity of 2. Treatment of complex 2 with 1 in an
equimolar ratio also produces 3 in quantitative yield as shown
in Scheme 1. The 31P NMR spectrum of 2 consists of a single
(8) (a) Fackler, J. P., Jr Inorg. Chem. 2002, 41, 6959–6972. (b) Forward,
J. M.; Bohmann, D.; Fackler, J. P., Jr.; Staples, R. J. Inorg. Chem.
1995, 34, 6330–6336. (c) Assefa, Z.; McBurnett, B. G.; Staples, R. J.;
Fackler, J. P., Jr.; Assmann, B.; Angermaier, K.; Schmidbaur, H. Inorg.
Chem. 1995, 34, 75–83.
(9) (a) Lin, Y.-Y.; Lai, S.-W.; Che, C.-M.; Fu, W.-F.; Zhou, Z.-Y.; Zhu,
N. Inorg. Chem. 2005, 44, 1511–1524. (b) Wei, Q.-H.; Zhang, L.-Y.;
Yin, G.-Q.; Shi, L.-X.; Chen, Z.-N. Organometallics 2005, 24, 3818–
3820. (c) Yip, J. H. K.; Prabhavathy, J. Angew. Chem., Int. Ed. 2001,
40, 2159–2162. (d) Bardaji, M.; Laguna, A.; Orera, V. M.; Villacampa,
M. D. Inorg. Chem. 1998, 37, 5125–5130. (e) Xiao, H.; Weng, Y.-
X.; Wong, W.-T.; Mak, T. C. W.; Che, C.-M. J. Chem. Soc., Dalton
Trans. 1997, 221–226. (f) Che, C.-M.; Yip, H.-K.; Li, D.; Peng, S.-
M.; Lee, G.-H.; Wang, Y.-M.; Liu, S.-T. J. Chem. Soc., Chem.
Commun. 1991, 1615–1617. (g) Yam, V. W.-W.; Lai, T.-F.; Che, C.-
M. J. Chem. Soc., Dalton Trans. 1990, 3747–3752.
(13) Ganesamoorthy, C.; Balakrishna, M. S.; George, P. P.; Mague, J. T.
Inorg. Chem. 2007, 46, 848–858.
(14) (a) Venkateswaran, R.; Mague, J. T.; Balakrishna, M. S. Inorg. Chem.
2007, 46, 809–817. (b) Punji, B.; Mague, J. T.; Balakrishna, M. S.
Inorg. Chem. 2006, 45, 9454–9464. (c) Chandrasekaran, P.; Mague,
J. T.; Balakrishna, M. S. Organometallics 2005, 24, 3780–3783. (d)
Chandrasekaran, P.; Mague, J. T.; Balakrishna, M. S. Inorg. Chem.
2005, 44, 7925–7932. (e) Balakrishna, M. S.; George, P. P.; Mague,
J. T. J. Organomet. Chem. 2004, 689, 3388–3394. (f) Punji, B.; Mague,
J. T.; Balakrishna, M. S. Inorg. Chem. 2007, 46, 10268–10275. (g)
Balakrishna, M. S.; Mague, J. T. Organometallics 2007, 26, 4677–
4679.
(10) (a) Yu, S.-Y.; Zhang, Z.-X.; Cheng, E. C.-C.; Li, Y.-Z.; Yam, V. W.-
W.; Huang, H.-P.; Zhang, R. J. Am. Chem. Soc. 2005, 127, 17994–
17995. (b) Chen, J.; Mohamed, A. A.; Abdou, H. E.; Bauer, J. A. K.;
Fackler, J. P., Jr.; Bruce, A. E.; Bruce, M. R. M. Chem. Commun.
2005, 1575–1577. (c) Fenske, D.; Langetepe, T.; Kappes, M. M.;
Hampe, O.; Weis, P. Angew. Chem., Int. Ed. 2000, 39, 1857–1860.
(d) Yam, V. W.-W.; Cheng, E. C.-C.; Cheung, K.-K. Angew. Chem.,
Int. Ed. 1999, 38, 197–199. (e) Tzeng, B.-C.; Che, C.-M.; Peng, S.-
M. J. Chem. Soc., Dalton Trans. 1996, 1769–1770.
(11) Balarishna, M. S.; Reddy, S. V.; Krishnamurthy, S. S.; Nixon, J. F.;
St. Laurent, J. C. T. R. B. Coord. Chem. ReV. 1994, 129, 1–90.
(12) (a) Yam, V. W.-W.; Cheng, E. C.-C.; Zhu, N. Angew. Chem., Int. Ed.
2001, 40, 1763–1765. (b) Yam, V. W.-W.; Cheng, E. C.-C.; Zhou,
Z.-Y. Angew. Chem., Int. Ed. 2000, 39, 1683–1685.
(15) (a) Krishna, H.; Krishnamurthy, S. S.; Nethaji, M. Polyhedron 2006,
25, 3189–3200. (b) Ganesan, M.; Krishnamurthy, S. S.; Nethaji, M.
J. Organomet. Chem. 2005, 690, 1080–1091. (c) Veige, A. S.; Gray,
T. G.; Nocera, D. G. Inorg. Chem. 2005, 44, 17–26. (d) Ly, T. Q.;
Woollins, J. D. Coord. Chem. ReV. 1998, 176, 451–481.
Inorganic Chemistry, Vol. 47, No. 7, 2008 2765