Published on Web 07/07/2010
Modification of the Optoelectronic Properties of Membranes via
Insertion of Amphiphilic Phenylenevinylene Oligoelectrolytes
Logan E. Garner,† Juhyun Park,‡ Scott M. Dyar,† Arkadiusz Chworos,†
James J. Sumner,§ and Guillermo C. Bazan*,†
Department of Chemistry and Biochemistry, UniVersity of California, Santa Barbara,
California 93106, U.S. Army Research Laboratory, Sensors and Electron DeVices Directorate,
Adelphi, Maryland 20783, and School of Chemical Engineering and Materials Science,
Chung-Ang UniVersity, 221 Heukseok-Dong, Dongjak-Gu, Seoul, Korea
Received February 24, 2010; E-mail: bazan@chem.ucsb.edu
Abstract: We report on the modification of membranes by incorporation of phenylenevinylene oligoelec-
trolytes with the goal of tailoring their optical and electronic properties and their applications. A water-
soluble distyrylstilbene oligoelectrolyte (DSSN+), capped at each end with nitrogen bound, terminally charged
pendant groups, was synthesized. The photophysical and solvatochromatic properties of DSSN+ and the
shorter distyrylbenzene analogue DSBN+ were probed and found to be useful for characterizing insertion
into membranes based on phospholipid vesicle systems. A combination of UV/visible absorbance and
photoluminescence spectroscopies, together with confocal microscopy, were employed to confirm membrane
incorporation. Examination of the emission intensity profile in stationary multilamellar vesicles obtained
with a polarized excitation source provides insight into the orientation of these chromophores within lipid
bilayers and indicates that these molecules are highly ordered, such that the hydrophobic electronically
delocalized region positions within the inner membrane with the long molecular axis perpendicular to the
bilayer plane. Cyclic voltammetry experiments provide evidence that DSSN+ and DSBN+ facilitate
transmembrane electron transport across lipid bilayers supported on glassy carbon electrodes. Additionally,
the interaction with living microorganisms was probed. Fluorescence imaging indicates that DSSN+ and
DSBN+ preferentially accumulate within cell membranes. Furthermore, notable increases in yeast microbial
fuel cell performance were observed when employing DSSN+ as the electron transport mediator.
porated into FETs via different deposition methods.3 The
accumulated effort has yielded insight not only into device
Introduction
Conjugated oligomers can be described by a select number
of repeat units extracted from a polymer containing an electroni-
cally π-delocalized backbone. Homologous progressions of these
molecules, and related systems with extended electronic delo-
calization, have been useful in fundamental studies with a focus
on understanding how molecular connectivity influences optical
and electronic properties and in the development of emerging
technologies.1 One well-appreciated opportunity involves inte-
gration as the semiconducting component in field effect transis-
tors (FETs) relevant for plastic electronics.2 A wide range of
structural variations have been designed, developed, and incor-
optimization but also on how weak intermolecular forces can
be coordinated to yield desirable morphologies at interfaces and
how intermolecular arrangements mediate charge carrier trans-
port.4 More recently, thin films of conjugated oligomers bearing
pendant groups with ionic functionalities, i.e., conjugated
oligoelectrolytes (COEs), were demonstrated to be effective for
reducing charge injection barriers at metal/organic interfaces.5
(3) (a) Bao, Z.; Rogers, J. A.; Katz, H. E. J. Mater. Chem. 1999, 9, 1895–
1904. (b) Briseno, A. L.; Roberts, M.; Ling, M.-M.; Moon, H.;
Nemanick, E. J.; Bao, Z. J. Am. Chem. Soc. 2006, 128, 3880–3881.
(c) Chandekar, A.; Whitten, J. E. Appl. Phys. Lett. 2007, 91, 113103.
(d) Drolet, N.; Morin, J.-F.; Leclerc, N.; Wakim, S.; Tao, Y.; Leclerc,
M. AdV. Funct. Mater. 2005, 15, 1671–1682. (e) Geens, W.; Tsamou-
ras, D.; Poortmans, J.; Hadziioannou, G. Synth. Met. 2001, 122, 191–
194. (f) Jurchescu, O. D.; Subramanian, S.; Kline, R. J.; Hudson, S. D.;
Anthony, J. E.; Jackson, T. N.; Gundlach, D. J. Chem. Mater. 2008,
20, 6733–6737. (g) Maulden, C. E.; Puntambekar, K.; Murphy, A. R.;
Liao, F.; Subramanian, V.; Fre´chet, J. M. J.; DeLongchamp, D. M.;
Fischer, D. A.; Toney, M. F. Chem. Mater. 2009, 21, 1927–1938.
(4) (a) Coropceanu, V.; Cornil, J.; de Silva, D. A.; Olivier, Y.; Silbey,
R.; Bre´das, J.-L. Chem. ReV. 2007, 107, 926–952. (b) Fichou, D. J.
Mater. Chem. 2000, 10, 571–588. (c) Hutchison, G. R.; Ratner, M. A.;
Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866–16881. (d) Lecle`re,
Ph.; Surin, M.; Viville, P.; Lazzaroni, R.; Kilbinger, A. F. M.; Henze,
O.; Feast, W. J.; Cavallini, M.; Biscarini, F.; Schenning, A. P. H. J.;
Meijer, E. W. Chem. Mater. 2004, 16, 4452–4466.
† University of California.
‡ Chung-Ang University.
§ U.S. Army Research Laboratory.
(1) (a) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350–
1377. (b) Electronic Materials: The Oligomer Approach; Mullen, K.,
Wegner, G., Eds.; Wiley: Weinheim, 1998. (c) Tour, J. M. Chem.
ReV. 1996, 96, 537–553.
(2) (a) Bre´das, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. ReV.
2004, 104, 4971–5003. (b) Facchetti, A. Mater. Today 2007, 10, 28–
37. (c) Facchetti, A.; Mushrush, M.; Yoon, M.-H.; Hutchison, G. R.;
Ratner, M. A.; Marks, T. J. Am. Chem. Soc. 2004, 126, 13859–13874.
(d) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359–
369. (e) Murphy, A. R.; Fre´chet, J. M. Chem. ReV. 2007, 107, 1066–
1096. (f) Yamishita, Y. Sci. Technol. AdV. Mater. 2009, 10, 1–9. (g)
Yasuda, T.; Ooi, H.; Morita, J.; Akama, Y.; Minoura, K.; Funahashi,
M.; Shimomura, T.; Kato, T. AdV. Funct. Mater. 2009, 19, 411–419.
(5) Yang, R.; Xu, Y.; Dang, X.-D.; Nguyen, T.-Q.; Cao, Y.; Bazan, G. C.
J. Am. Chem. Soc. 2008, 130, 3282–3283.
9
10042 J. AM. CHEM. SOC. 2010, 132, 10042–10052
10.1021/ja1016156 2010 American Chemical Society