1212 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 5
Neugebauer et al.
(4) Imai, S.; Armstrong, C. M.; Kaeberlein, M.; Guarente, L. Transcrip-
tional silencing and longevity protein Sir2 is an NAD- dependent
histone deacetylase. Nature 2000, 403, 795–800.
(27) Hayashi, T. Rhodium-catalyzed asymmetric addition of aryl- and
alkenylboron reagents to electron-deficient olefins. Pure Appl. Chem.
2004, 76, 465–475.
(28) Ohta, A.; Inoue, A.; Watanabe, T. Introduction of the methyl group
into the pyrazine ring. Heterocycles 1984, 22, 2317–2321.
(29) Wright, S. W.; Hageman, D. L.; Mcclure, L. D. Fluoride-mediated
boronic acid coupling reactions. J. Org. Chem. 1994, 59, 6095–6097.
(30) Tschaen, D. M.; Desmond, R.; King, A. O.; Fortin, M. C.; Pipik, B.;
King, S.; Verhoeven, T. R. An improved procedure of aromatic
cyanation. Synth. Commun. 1994, 24, 887–890.
(31) Maffioli, S. I.; Marzorati, E.; Marazzi, A. Mild and reversible
dehydration of primary amides with PdCl2 in aqueous acetonitrile.
Org. Lett. 2005, 7, 5237–5239.
(32) Heltweg, B.; Trapp, J.; Jung, M. In vitro assays for the determination
of histone deacetylase activity. Methods 2005, 36, 332–337.
(33) Avalos, J. L.; Bever, K. M.; Wolberger, C. Mechanism of sirtuin
inhibition by nicotinamide: Altering the NAD(+) cosubstrate specific-
ity of a Sir2 enzyme. Mol. Cell 2005, 17, 855–868.
(34) Finnin, M. S.; Donigian, J. R.; Pavletich, N. P. Structure of the histone
deacetylase SIRT2. Nat. Struct. Biol. 2001, 8, 621–625.
(35) Trapp, J.; Meier, R.; Hongwiset, D.; Kassack, M. U.; Sippl, W.; Jung,
M. Structure-activity studies on suramin analogues as inhibitors of
NAD(+)-dependent histone deacetylases (sirtuins). ChemMedChem
2007, 2, 1419–1431.
(36) Jones, G.; Willet, P.; Glen, R. C.; Leach, A. R.; Taylor, R.
Development and validation of a genetic algorithm for flexible docking.
J. Mol. Biol. 1997, 267, 727–748.
(37) Tame, J. R. Scoring functionssThe first 100 years. J. Comput.-Aided
Mol. Des. 2005, 19, 445–451.
(38) Case, D. A.; Cheatham, T. E. I.; Darden, T.; Gohlke, H.; Luo, R.;
Merz, K. M. J.; Onufriev, A.; Simmerling, C.; Wang, W.; Woods, R.
The Amber biomolecular simulation programs. J. Comput. Chem.
2005, 26, 1668–1688.
(39) Pastor, R. W.; Brooks, B. R.; Szabo, A. An analysis of the accuracy
of Langevin and molecular dynamics algorithms. Mol. Phys. 1988,
65, 1409–1419.
(40) Darden, T.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method
for Ewald sums in large systems. J. Chem. Phys. 1993, 103, 8577–
8593.
(41) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of
the cartesian equations of motions of a system with constraints: Molecular
dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341.
(42) Gohlke, H.; Case, D. A. Converging free energy estimates: MM-
PB(GB)SA studies on the protein-protein complex Ras-Raf. J. Com-
put. Chem. 2004, 25, 238–250.
(43) Mossman, T. Rapid colorimetric assay for cellular growth and survival:
application to proliferation and cytotoxic assays. J. Immunol. Methods
1983, 65, 55–63.
(44) Hubbert, C.; Guardiola, A. R.; Shao, R.; Kawaguchi, Y.; Ito, A.; Nixon,
A.; Yoshida, M.; Wang, X. F.; Yao, T. P. HDAC6 is a microtubule-
associated deacetylase. Nature 2002, 417, 455–458.
(45) Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin, S.;
Matthias, P. HDAC-6 interacts with and deacetylates tubulin and
microtubules in vivo. EMBO J. 2003, 22, 1168–1179.
(46) Sanders, B. D.; Zhao, K.; Slama, J. T.; Marmorstein, R. Structural
basis for nicotinamide inhibition and base exchange in Sir2 enzymes.
Mol. Cell 2007, 25, 463–472.
(47) Utley, J. H. P.; Rozenberg, G. G. Electroorganic reactions. Part 56:
Anodic oxidation of 2-methyl- and 2-benzylnaphthalenes: Factors
influencing competing pathways. Tetrahedron 2002, 58, 5251–5265.
(48) Smith, W. B. Some Observations on the iodination of 2-naphthol and
its methyl ether. J. Org. Chem. 1985, 50, 3649–3651.
(5) Pagans, S.; Pedal, A.; North, B. J.; Kaehlcke, K.; Marshall, B. L.;
Dorr, A.; Hetzer-Egger, C.; Henklein, P.; Frye, R.; McBurney, M. W.;
Hruby, H.; Jung, M.; Verdin, E.; Ott, M. SIRT1 regulates HIV
transcription via Tat deacetylation. PLoS Biol. 2005, 3, e41.
(6) Vaziri, H.; Dessain, S. K.; Ng Eaton, E.; Imai, S. I.; Frye, R. A.;
Pandita, T. K.; Guarente, L.; Weinberg, R. A. hSIR2(SIRT1) functions
as an NAD-dependent p53 deacetylase. Cell 2001, 107, 149–159.
(7) Bereshchenko, O. R.; Gu, W.; Dalla-Favera, R. Acetylation inactivates
the transcriptional repressor BCL6. Nat. Genet. 2002, 32, 606–613.
(8) Ota, H.; Tokunaga, E.; Chang, K.; Hikasa, M.; Iijima, K.; Eto, M.;
Kozaki, K.; Akishita, M.; Ouchi, Y.; Kaneki, M. Sirt1 inhibitor,
Sirtinol, induces senescence-like growth arrest with attenuated Ras-
MAPK signaling in human cancer cells. Oncogene 2005.
(9) Outeiro, T. F.; Kontopoulos, E.; Altman, S.; Kufareva, I.; Strathearn,
K. E.; Amore, A. M.; Volk, C. B.; Maxwell, M. M.; Rochet, J. C.;
McLean, P. J.; Young, A. B.; Abagyan, R.; Feany, M. B.; Hyman,
B. T.; Kazantsev, A. Sirtuin 2 inhibitors rescue {alpha}-synuclein-
mediated toxicity in models of Parkinson’s disease. Science 2007, 317,
516–519.
(10) Garske, A. L.; Smith, B. C.; Denu, J. M. Linking SIRT2 to Parkinson’s
disease. ACS Chem. Biol. 2007, 2, 529–532.
(11) Schäfer, S.; Jung, M. Chromatin modifications as targets for new
anticancer drugs. Arch. Pharm. Chem. Life Sci. 2005, 338, 347–357.
(12) Biel, M.; Wascholowski, V.; Giannis, A. Epigenetics-An epicenter
of gene regulation: Histones and histone-modifying enzymes. Angew.
Chem., Int. Ed. 2005, 44, 3186–3216.
(13) Grozinger, C. M.; Chao, E. D.; Blackwell, H. E.; Moazed, D.;
Schreiber, S. L. Identification of a class of small molecule inhibitors
of the sirtuin family of NAD-dependent deacetylases by phenotypic
screening. J. Biol. Chem. 2001, 276, 38837–38843.
(14) Heltweg, B.; Dequiedt, F.; Verdin, E.; Jung, M. A nonisotopic substrate
for assaying both human zinc and NAD+-dependent histone deacety-
lases. Anal. Biochem. 2003, 319, 42–48.
(15) Mai, A.; Massa, S.; Lavu, S.; Pezzi, R.; Simeoni, S.; Ragno, R.;
Mariotti, F. R.; Chiani, F.; Camilloni, G.; Sinclair, D. A. Design,
synthesis, and biological evaluation of sirtinol analogues as class III
histone/protein deacetylase (sirtuin) inhibitors. J. Med. Chem. 2005,
48, 7789–7795.
(16) Bedalov, A.; Gatbonton, T.; Irvine, W. P.; Gottschling, D. E.; Simon,
J. A. Identification of a small molecule inhibitor of Sir2p. Proc. Natl.
Acad. Sci. U.S.A. 2001, 98, 15113–15118.
(17) Posakony, J.; Hirao, M.; Stevens, S.; Simon, J. A.; Bedalov, A.
Inhibitors of Sir2: Evaluation of splitomicin analogues. J. Med. Chem.
2004, 47, 2635–2644.
(18) Hirao, M.; Posakony, J.; Nelson, M.; Hruby, H.; Jung, M.; Simon,
J. A.; Bedalov, A. Identification of selective inhibitors of NAD+-
dependent deacetylases using phenotypic screens in yeast. J. Biol.
Chem. 2003, 278, 52773–52782.
(19) Tervo, A. J.; Kyrylenko, S.; Niskanen, P.; Salminen, A.; Leppanen,
J.; Nyronen, T. H.; Jarvinen, T.; Poso, A. An in silico approach to
discovering novel inhibitors of human sirtuin type 2. J. Med. Chem.
2004, 47, 6292–6298.
(20) Tervo, A. J.; Suuronen, T.; Kyrylenko, S.; Kuusisto, E.; Kiviranta,
P. H.; Salminen, A.; Leppanen, J.; Poso, A. Discovering inhibitors of
human sirtuin type 2: Novel structural scaffolds. J. Med. Chem. 2006,
49, 7239–7241.
(21) Napper, A. D.; Hixon, J.; McDonagh, T.; Keavey, K.; Pons, J. F.;
Barker, J.; Yau, W. T.; Amouzegh, P.; Flegg, A.; Hamelin, E.; Thomas,
R. J.; Kates, M.; Jones, S.; Navia, M. A.; Saunders, J. O.; DiStefano,
P. S.; Curtis, R. Discovery of indoles as potent and selective inhibitors
of the deacetylase SIRT1. J. Med. Chem. 2005, 48, 8045–8054.
(22) Heltweg, B.; Gatbonton, T.; Schuler, A. D.; Posakony, J.; Li, H.;
Goehle, S.; Kollipara, R.; Depinho, R. A.; Gu, Y.; Simon, J. A.;
Bedalov, A. Antitumor activity of a small-molecule inhibitor of human
silent information regulator 2 enzymes. Cancer Res. 2006, 66, 4368–
4377.
(23) Trapp, J.; Jochum, A.; Meier, R.; Saunders, L.; Marshall, B.; Kunick,
C.; Verdin, E.; Goekjian, P. G.; Sippl, W.; Jung, M. Adenosine
mimetics as inhibitors of NAD+-dependent histone deacetylases, from
kinase to sirtuin inhibition. J. Med. Chem. 2006, 49, 7307–7316.
(24) Pang, Y. P. Novel zinc protein molecular dynamics simulations: Steps
toward antiangiogenesis for cancer treatment. J. Mol. Model. 1999,
5, 196–202.
(49) Fries, H.; Schimmelschmidt, I. Darstellung von dibromnaphthol aus
tribromnaphthol. Justus Liebigs Ann. Chem. 1930, 484, 245–271.
(50) North, B. J.; Schwer, B.; Ahuja, N.; Marshall, B.; Verdin, E.
Preparation of enzymatically active recombinant class III protein
deacetylases. Methods 2005, 36, 338–345.
(51) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. Semi-
analytical treatment of solvation for molecular mechanics and dynam-
ics. J. Am. Chem. Soc. 1990, 112, 6127–6129.
(52) Trapp, J.; Jung, M. The role of NAD+ dependent histone deacetylases
(sirtuins) in aging. Curr. Drug Targets 2006, 7, 1553–1560.
(53) Molecular Operating EnVironment (MOE) 2006.8; Chemical Comput-
ing Group Inc.: Montreal, Quebec, Canada, 2006.
eyesopen.com.
(55) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Comparison of multiple Amber force fields and
development of improved protein backbone parameters. Proteins 2006,
65, 712–725.
(25) Lu, X. Y.; Lin, S. H. Pd(II)-bipyridine catalyzed conjugate addition
of arylboronic acid to R,ꢀ-unsaturated carbonyl compounds. J. Org.
Chem. 2005, 70, 9651–9653.
(26) Abouassali, M.; Decoret, C.; Royer, J.; Dreux, J. Study on reactivity
of coumarins. 1. Regioselectivity of Grignard reagents with coumarin.
Tetrahedron 1976, 32, 1655–1659.
(56) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A.
Development and testing of a general amber force field. J. Comput.
Chem. 2004, 25, 1157–1174.