C O M M U N I C A T I O N S
1C shows the transient for a single OPV-1-CdSe nanostructure
undergoing 4π rotations of E (lines and markers), along with a
sin2 θ fit (dashed line) taken over 50 s (angular integration ∼14°).
This transient shows a remarkable reproducibility in phase of the
polarization response, and >90% extinction of emission for µabs
orthogonal to E, making these nanoparticles attractive as potential
robust polarization-sensitive optical switches. We note that all the
CdSe-OPV-1 particles observed gave very deep modulation depth,
a result inconsistent with a random distribution of 2-D degenerate
dipole emitters, in which an appreciable fraction of dots would give
near zero modulation depth.
In summary, OPV-covered quantum dots were prepared and
characterized as single nanostructures. Defocused optical imaging
and excitation polarization anisotropy measurements separately
reveal a l-D character to both the absorption and emission dipole
moments, a novel effect in functionalized quantum dot systems.
While the origin of this effect is not clearly understood, we speculate
that the appearance of linear polarization in the QD emission is
associated with photoinduced charge transfer from the ligand to
the QD surface.18,19 The pinned excess surface charges act to break
the spherical symmetry and thus the 2-D degeneracy. While further
experiments are necessary to confirm this, we note that this effect
might be exploited to produce novel polarization modulation
devices.
Figure 1. (A) Defocused fluorescence image of OPV-CdSe nanostructure,
showing a spatial intensity pattern characteristic of a linear dipole oriented
in the x-y plane. (B) Schematic showing a polarized excitation geometry
of absorption moment (µabs), laser electric field (E), and separation angle
(θ). (C) PL intensity of a single CdSe-OPV nanostructure during 4π full
rotations of E (lines and markers), showing nearly 100% extinction for
perpendicular excitation, along with a sin2 θ fit (dashed line).
Acknowledgment. The authors acknowledge financial support
of the National Science Foundation (CHE-0239486 Materials
Research Science and Engineering Center, and Center for
Hierarchical Manufacturing) and the Department of Energy.
Interestingly, OPV-1-covered CdSe nanostructures exhibit ab-
sorption and emission properties characteristic of linear dipoles,
similar to those found in organic dyes11 and collapsed polymer
chains.12 Figure 1A shows the spatial photon distribution from a
single OPV-1-CdSe nanostructure under slight defocusing in a
high numerical aperture (NA) optical system (Inverted Nikon TE300
microscope, 1.4NA) excited in epi-illumination geometry using a
405 nm GaN diode laser. These images, along with aberration-
corrected numerical simulations (Supporting Information), provide
evidence of a highly linear electric dipole radiator.13 The dipole
images are filtered spectrally to exclude any photoluminescence
emission from the OPV ligands, such that the dipole emission
distribution originates only from the pseudo-spherical CdSe core.
A typical dipole image is shown in Figure 1A. Thus, it appears
that the presence of OPV ligands on the quantum dot surface results
in a one-dimensional emission dipole moment, in contrast with the
ordinarily observed 2-D degenerate emission moments.14,15 To rule
out a potential contributing dipole emission from high aspect ratio
particles (nanorods), which are known to exhibit such linear
emission geometries,16 transmission electron microscopy (TEM) was
performed, confirming the spherical nature of the particles following
ligand exchange with OPV-1.
To further probe the one-dimensional nature of this transition,
polarization anisotropy measurements were performed on single
OPV-covered nanostructures, similar to studies by Chung et al.14c
on quantum dots and Hu et al. on flexible MEH-PPV chains.17
Figure 1B depicts the experimental excitation geometry; the linearly
polarized electric field of the excitation laser E is rotated at a
constant rate in the x-y plane, thereby sweeping angles θ between
the absorption transition moment and E. For a linear absorber, this
results in a sin2 θ intensity variation during constant rotation. Figure
Supporting Information Available: Experimental procedures and
characterization of compounds in Scheme 1. This material is available
References
(1) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
(2) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354.
(3) Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Nature 2002, 420, 800.
(4) Solomeshch, O.; Kigel, A.; Saschiuk, A.; Medvedev, V.; Aharoni, A.;
Razin, A.; Eichen, Y.; Banin, U.; Lifshitz, E.; Tesslerc, N. J. Appl. Phys.
2005, 98, 074310.
(5) Liu, J.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Fre´chet, J. M. J. J. Am.
Chem. Soc. 2004, 126, 6550.
(6) Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J.
AdV. Mater. 2003, 15, 58.
(7) Odoi, M. Y.; Hammer, N. I.; Sill, K.; Emrick, T.; Barnes, M. D. J. Am.
Chem. Soc. 2006, 128, 3506.
(8) Hammer, N. I.; Early, K. T.; Sill, K.; Odoi, M. Y.; Emrick, T.; Barnes,
M. J. Phys. Chem. B 2006, 110, 14167.
(9) Jorgensen, M.; Krebs, F. C. J. Org. Chem. 2004, 69, 6688.
(10) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183.
(11) Bartko, A. P.; Dickson, R. M. J. Phys. Chem. B 1999, 103, 11237.
(12) Mehta, A.; Kumar, P.; Dadmun, M. D.; Zheng, J.; Dickson, R. M.;
Thundat, T.; Sumpter, B. G.; Barnes, M. D. Nano Lett. 2003, 3, 603.
(13) Hellen, E. H.; Axelrod, D. J. Opt. Soc. Am. 1987, 4, 337.
(14) (a) Brokmann, X.; Coolen, L.; Dahan, M.; Hermier, J. P. Appl. Phys. Lett.
2004, 93, 107403. (b) Patra, D.; Gregor, I.; Enderlein, J.; Sauer, M. Appl.
Phys. Lett. 2005, 87, 101103. (c) Chung, I. H.; Shimizu, K. T.; Bawendi,
M. G. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 405.
(15) Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi,
K. Phys. ReV. B 1996, 54, 4843.
(16) Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos,
A. P. Science 2001, 292, 2060.
(17) Hu, D. H.; Yu, J.; Wong, K.; Bagchi, B.; Rossky, P. J.; Barbara, P. F.
Nature 2000, 405, 1030.
(18) , Greenham, N. C.; Peng, X.; Alivisatos, A. P. Phys. ReV. B 1996, 54,
17628.
(19) Ginger, D. S.; Greenham, N. C. Phys. ReV. B 1999, 59, 10622.
JA077409+
9
J. AM. CHEM. SOC. VOL. 130, NO. 8, 2008 2385