824
Y. Xiao et al. / Bioorg. Med. Chem. Lett. 18 (2008) 821–824
(c) Regan, J. Life Sci. 2003, 74, 143; (d) Kobayashi, T.;
Narumiya, S. Prostaglandin Lipid Mediators 2002, 68-69,
557; (e) Sugimoto, Y.; Narumiya, S.; Ichikawa, A. Prog.
Lipid Res. 2000, 39, 289; (f) Boie, Y.; Stocco, R.; Sawyer,
N.; Slipetz, D.; Ungrin, M.; Neuschafer-Rube, F.;
Puschel, G.; Metters, K.; Abranovitz, M. Eur. J. Pharm.
1997, 340, 227.
kg (po route), respectively, which is consistent with its
high binding affinity (Ki = 0.05 nM) and potency
(EC50 = 0.03 nM) for EP4. In contrast, butaprost did
not show any activity when administered at up to
30 mg/kg (sc route) suggesting that EP4 might be more
important than EP2 in mediating this biological response.
2. Breyer, R. M.; Bagdassarian, C. K.; Myers, S. A.; Breyer,
M. D. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 661.
3. Takayama, K.; Garcia-Cardena, G.; Sukhova, G. K.;
Comander, J.; Gimbrone, M. A., Jr.; Libby, P. J. Biol.
Chem. 2002, 277, 44147.
4. (a) Yamamoto, S. Comprehensive Nat. Prod. Chem. 1999,
1, 255; (b) Goto, M. P.; Goldman, A. S. Handbook Expr.
Pharmacol. 1997, 124, 433, Drug Toxicity in Embryonic
Development I; (c) Collins, P. W.; Djuric, S. W. Chem.
Rev. 1993, 93, 1533.
5. (a) Cameron, K. O.; Lefker, B. A.; Crawford, D. T.;
DaSilva-Jardine, P.; DeNinno, S. L.; Gilbert, S.; Grasser,
W. A.; Ke, H. Z.; Lu, B.; Owen, T. A.; Paralkar, V. M.;
Thompson, D. D.; Tjoa, C. M.; Zamistoski, M. P.;
Abstracts of Papers, 224th National Meeting of the
American Chemical Society, Boston, MA 2002; (b) Billot,
X.; Chateauneuf, A.; Chauret, N.; Denis, D.; Greig, G.;
Mathieu, M.-C.; Metters, K. M.; Slipetz, D. M.; Young,
R. N. Bioorg. Med.Chem. Lett. 2003, 13, 1129; (c) Zhao,
Z.; Bao, B.; Brugger, N.; Fischer, D.; Giachetti, C.;
Golzio, L.; Karra, S.; Marinelli, P.; McKenna, S.; Palmer,
E.; Reddy, A.; Xiao, Y.; Araldi, G. Abstracts of Papers,
228th National Meeting of the American Chemical Soci-
ety, Boston, MA, 2004; (d) Xiao, Y.; Araldi, G. L.; Zhao,
Z.; Brugger, N.; Karra, S.; Fischer, D.; Palmer, E. Bioorg.
Med. Chem. Lett. 2007, 17, 4323; (e) Tani, K.; Naganwa,
A.; Ishida, A.; Egashira, H.; Sagawa, K.; Harada, H.;
Ogawa, M.; Maruyama, T.; Ohuchida, S.; Nakai, H.;
Kondo, K.; Toda, M. Bioorg. Med. Chem. Lett. 2001, 11,
2025; (f) Elworthy, T. R.; Brill, E. R.; Chiou, F. C.;
Harris, J. R.; Hendricks, R. T.; Huang, J.; Kim, W.; Lach,
L. K.; Miradegan, T.; Yee, C.; Walker, K. A. M. J. Med.
Chem. 2004, 47, 6124.
The guinea pig pulmonary-cholinergic in vivo model is
generally used to test potential therapeutics for the treat-
ment of asthma in humans.13 In our studies, groups of 3
Duncan Hartley male or female guinea pigs, weighing
250 50 g, were anesthetized with sodium pentobarbital
(50 mg/kg ip) and succinylcholine chloride. The trachea
was cannulated and tracheal pressure was recorded
through a sidearm of the cannula connected to a
P23ID Statham transducer. Mean arterial pressure was
monitored from a cannulated carotid artery, and heart
rate was obtained from a chest-affixed electrode. The
jugular vein was cannulated for iv administration of
the test compounds in a volume of 1 mL/kg. Choliner-
gic-induced bronchoconstrictor responses, reflected as
increases in tracheal pressure (cm H2O), were elicited
by administration of methacholine hydrochloride
(10 lg/kg base weight iv). Compound 2a was injected
iv at doses 30 ng/kg to 0.3 mg/kg. Notably, significant
methacholine-induced bronchoconstriction (>50%) inhi-
bition was observed at doses >3 lg/kg. The calculated
effective dose (ED50) for Compound 2a was approxi-
mately 1.7 lg/kg, while not altering the blood pressure
or heart rate. This compound showed activity in dilation
of bronchiolar muscles, which resulted in inhibition of
methacholine-induced bronchomuscle constriction.
Conclusions. In summary, we have found that analogs of
PGE2 wherein the hydroxyl cyclopentanone ring has
been replaced by a pyrrolidin-2-one ring are potentially
useful EP4 receptor agonists. Compound 2a displayed
good PK parameters and showed activity in two
in vivo animal models. These compounds also exhibited
an anti-inflammatory activity and were a potent ana-
bolic agent for bone.11 More in vivo animal data will
be reported elsewhere.
6. Zhao, Z.; Araldi, G. L.; Reddy, P. A.; Xiao, Y.; Liao, Y.;
Karra, S.; Brugger, N.; Fischer, D.; Palmer, E. Bioorg.
Med. Chem. Lett. 2007, 17, 6572.
7. The ee of 9 was greater than 95% as determined by chiral
HPLC.
8. Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C.-P.;
Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925,
Diastereoisomers are separable with reverse phase HPLC
in the last purification.
9. Gardiner, P. J. Br. J. Pharmacol. 1986, 87, 45.
10. Maruyama, T.; kambe, T.; Maruyama, T.; Yoshida, H.;
Nishiura, A. WO 2003/009872 A1.
Acknowledgments
We gratefully acknowledge Dr. Ben Askew and Dr. Les-
ley Liu-Bujalski for proofreading the manuscript.
11. Araldi, G. L.; Reddy, A. P.; Zhao, Z.; Mckenna, S. D.;
Bao, B. WO 2003/10364 A2.
12. The compounds also showed ovulation induction when
delivered using the i.v. route (data were not disclosed here).
13. Fleisch, J. H.; Rinkema, L. E.; Haisch, K. D.; Swanson-
Bean, D.; Goodson, T.; Ho, P. P.; Marshall, W. S.
J. Pharmacol. Exp. Ther. 1985, 233, 148.
References and notes
1. (a) Funk, C. D. Science 2001, 294, 1871; (b) Narumiya, S.;
Sugimoto, Y.; Ushikubi, F. Pharm. Rev. 1999, 79, 1193;