Journal of the American Chemical Society
Communication
HP35 independent of the thioamide. This is likely to be true in
any real protein, where almost every fluorophore experiences
some quenching when located near redox-active amino acids
such as Trp, Tyr, His, Met, and Cys.22 Since the HP35 proteins
studied here differ only by the single O to S substitution in the
Leu′ amide bond, we can assign quenching to be specifically
due to the thioamide. It is crucial that measurements on
thioamide-containing proteins be compared to the all oxo-
amide version to control for the effects of temperature, solvent
accessibility, and neighboring residues on fluorescence that may
arise during a conformational change. With these controls, one
can follow the unfolding of events specific to the thioamide site
with fluorescence spectroscopy. At this point, we do not
attempt to assign interchromophore distances on the basis of
the efficiency of quenching; rather we merely interpret
quenching as resulting from transient molecular contact so
that fluorophores are less than 20 Å apart if quenching is
observed. Further mechanistic study may allow us to assign
distances in a more precise manner.
In conclusion, we have demonstrated that thioamides are
capable of quenching a variety of fluorophores, including some
that can be selectively excited in the context of a protein. Our
findings from steady-state and lifetime measurements of Acd
fluorescence indicate that this quenching arises through a
dynamic photoinduced electron transfer mechanism. Further-
more, we have shown that the Acd-thioamide fluorophore−
quencher probe pair can be used to study conformational
changes in proteins. Although previous experiments have
gained valuable information using visible wavelength fluores-
cent donors and Trp quenchers, we believe that our reporter
system will allow us to study protein dynamics in far greater
detail because the thioamide will be tolerated at more positions
in the protein.12,23 Other recent work in our laboratory has
demonstrated that thioamides can be incorporated into full-
sized proteins through native chemical ligation, so that studies
of the type conducted on HP35 could be carried out on larger
proteins.24 Taken together, these studies lay the groundwork
for the application of thioamide quenching to the study of
protein folding and the design of conformational biosensors.
use of the fluorometer, major instruments are supported by
NSF DMR05-20020 and NSF MRI-0820996. We thank Tom
Troxler for assistance with the TCSPC measurements collected
at the Regional Laser and Biomedical Technology Laboratories
at the University of Pennsylvania (supported through NIH/
NCRR P41RR001348).
REFERENCES
■
(1) (a) Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R.
Y. Science 2006, 312, 217. (b) Royer, C. A. Chem. Rev. 2006, 106,
1769.
(2) Ross, J. B.; Szabo, A. G.; Hogue, C. W. V. Methods Enzymol.
1997, 278, 151.
(3) (a) Selvin, P. R. Nat. Struct. Biol. 2000, 7, 730. (b) Weiss, S. Nat.
Struct. Biol. 2000, 7, 724.
(4) (a) Goldberg, J. M.; Batjargal, S.; Petersson, E. J. J. Am. Chem. Soc.
2010, 132, 14718. (b) Goldberg, J. M.; Wissner, R. F.; Klein, A. M.;
Petersson, E. J. Chem. Commun. 2012, 48, 1550.
(5) Speiser, S. Chem. Rev. 1996, 96, 1953.
(6) (a) Budisa, N.; Pal, P. P. Biol. Chem. 2004, 385, 893. (b) Hamada,
H.; Kameshima, N.; Szymanska, A.; Wegner, K.; Lankiewicz, L.;
Shinohara, H.; Taki, M.; Sisido, M. Bioorg. Med. Chem. 2005, 13, 3379.
(c) Taki, M.; Yamazaki, Y.; Suzuki, Y.; Sisido, M. Chem. Lett. 2010, 39,
818. (d) Katritzky, A. R.; Narindoshvili, T. Org. Biomol. Chem. 2009, 7,
627. (e) Wang, J. Y.; Xie, J. M.; Schultz, P. G. J. Am. Chem. Soc. 2006,
128, 8738.
(7) Doose, S.; Neuweiler, H.; Barsch, H.; Sauer, M. Proc. Natl. Acad.
Sci. U.S.A. 2007, 104, 17400.
(8) Szymanska, A.; Wegner, K.; Lankiewicz, L. Helv. Chim. Acta 2003,
86, 3326.
(9) Lotte, K.; Plessow, R.; Brockhinke, A. Photochem. Photobiol. Sci.
2004, 3, 348.
(10) Brun, M. P.; Bischoff, L.; Garbay, C. Angew. Chem., Int. Ed.
2004, 43, 3432.
(11) Lakowicz, J. R. Principles of fluorescence spectroscopy; Springer:
Berlin, 2006.
(12) Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2009, 10,
1389.
(13) Bordwell, F. G.; Algrim, D. J.; Harrelson, J. A. J. Am. Chem. Soc.
1988, 110, 5903.
(14) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259.
(15) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem.
1996, 100, 5541.
(16) Mukherjee, M.; Karmakar, S.; Chakraborty, T. J. Phys. Chem. A
2011, 115, 1830.
(17) (a) McKnight, C. J.; Doering, D. S.; Matsudaira, P. T.; Kim, P. S.
J. Mol. Biol. 1996, 260, 126. (b) Cellmer, T.; Buscaglia, M.; Henry, E.
R.; Hofrichter, J.; Eaton, W. A. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
6103.
ASSOCIATED CONTENT
* Supporting Information
Descriptions of peptide and small molecule synthesis,
purification, and characterization; spectroscopy; electrochem-
ical measurements; and calculations. This material is available
■
S
(18) McKnight, C. J.; Matsudaira, P. T.; Kim, P. S. Nat. Struct. Biol.
1997, 4, 180.
(19) Tucker, M. J.; Oyola, R.; Gai, F. Biopolymers 2006, 83, 571.
(20) (a) Brewer, S. H.; Song, B. B.; Raleigh, D. P.; Dyer, R. B.
Biochemistry 2007, 46, 3279. (b) Glasscock, J. M.; Zhu, Y. J.;
Chowdhury, P.; Tang, J.; Gai, F. Biochemistry 2008, 47, 11070.
(c) Zhu, L.; Ghosh, K.; King, M.; Cellmer, T.; Bakajin, O.; Lapidus, L.
J. J. Phys. Chem. B 2011, 115, 12632.
(21) (a) Beauchamp, K. A.; Ensign, D. L.; Das, R.; Pande, V. S. Proc.
Natl. Acad. Sci. U.S.A. 2011, 108, 12734. (b) Reiner, A.; Henklein, P.;
Kiefhaber, T. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 4955.
(22) (a) Chen, H.; Ahsan, S. S.; Santiago-Berrios, M. E. B.; Abruna,
H. D.; Webb, W. W. J. Am. Chem. Soc. 2010, 132, 7244. (b) Chen, Y.;
Barkley, M. D. Biochemistry 1998, 37, 9976.
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Temple University School of Medicine, Philadelphia PA
19140, United States
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(23) Mansoor, S. E.; DeWitt, M. A.; Farrens, D. L. Biochemistry 2011,
49, 9722.
(24) Batjargal, S. B.; Wang, Y. J.; Goldberg, J. M.; Wissner, R. F.;
This work was supported by funding from the University of
Pennsylvania, the National Science Foundation (CHE-1020205
to E.J.P.), and the Searle Scholars Program (10-SSP-214 to
E.J.P.). We thank Jerome Robinson and Eric Schelter for
assistance with electrochemical measurements, Jeff Saven for
Petersson, E. J. J. Am. Chem. Soc. 2012, 134, DOI: 10.1021/ja2113245.
6091
dx.doi.org/10.1021/ja3005094 | J. Am. Chem. Soc. 2012, 134, 6088−6091