J. Choi et al. / Tetrahedron Letters 49 (2008) 1103–1106
1105
16. Zhang, W.; Zhang, L.; Li, X.; Weigel, J. A.; Hall, S. E.; Mayer, J. P.
J. Comb. Chem. 2001, 2001, 151–153.
17. Ngu, K.; Patel, D. V. J. Org. Chem. 1997, 62, 7088–7089.
18. Grigg, R.; Major, J. P.; Martin, F. M.; Whittaker, M. Tetrahedron
Lett. 1999, 40, 7709–7711.
33% while others had yields of 50–100%. Purities of the
products cleaved from the Marshall resin were 74–97%
according to HPLC analysis. Liquid-chromatography–
mass-spectrometry analyses of the 14 crude products listed
in Table 1 showed that all products were free of starting
materials except that hydroxamic acids of entries 8 and
12 were contaminated, respectively, by 2% and 15% of cor-
responding carboxylic acids that can be readily separated
from the hydroxamic acids by HPLC.
The above results show that the Marshall resin is a use-
ful solid-phase support for converting a wide range of car-
boxylic acids to hydroxamic acids by using split-and-pool
combinatorial method.14,15 The Marshall resin can yield
directly a hydroxamic acid, unlike the thioester-attached
resin that requires the use of NH2OTMS and needs an
extra step of deprotection after obtaining the O-protected
hydroxamic acid. The convenient synthesis of a library of
discrete hydroxamic acids using the Marshall resin demon-
strated herein is useful to the syntheses of hydroxamate-
containing inhibitors of metalloproteins involved in many
diseases such as cancers,5 cardiovascular diseases,6–8
AIDS,9,10 and Alzheimer’s disease.11
19. Gu, X.; Wang, Y.; Kumar, A.; Ye, G.; Parang, K.; Sun, G. J. Med.
Chem. 2006, 49, 7532–7539.
20. Robinson, D. E.; Holladay, M. W. Org. Lett. 2000, 2, 2777–2779.
21. Stanger, K. J.; Krchnak, V. J. Comb. Chem. 2006, 8, 435–439.
22. Richter, L. S.; Desai, M. C. Tetrahedron Lett. 1997, 38, 321–322.
23. Thouin, E.; Lubell, W. D. Tetrahedron Lett. 2000, 41, 457–460.
24. Porcheddu, A.; Giacomelli, G. J. Org. Chem. 2006, 71, 7057–
7059.
25. Bauer, U.; Ho, W.-B.; Koskinen, A. M. P. Tetrahedron Lett. 1997, 41,
7233–7236.
26. Boldt, G. E.; Kennedy, J. P.; Janda, K. D. Org. Lett. 2006, 8, 1729–
1732.
27. Mellor, S. L.; McGuire, C.; Chan, W. C. Tetrahedron Lett. 1997, 38,
3311–3314.
28. Ho, C. Y.; Strobel, E.; Ralbovsky, J.; Galemmo, R. A. J. J. Org.
Chem. 2005, 70, 4873–4875.
29. Marshall, D. L.; Liener, I. E. J. Org. Chem. 1970, 35, 867–868.
30. Fantauzzi, P. P.; Yager, K. M. Tetrahedron Lett. 1998, 39, 1291–1294.
31. Breitenbucher, J. G.; Hui, H. C. Tetrahedron Lett. 1998, 39, 8207–
8210.
32. Dressman, B. A.; Singh, U.; Kaldor, S. W. Tetrahedron Lett. 1998, 39,
3631–3634.
33. Breitenbucher, J. G.; Johnson, C. R.; Haight, M.; Phelan, J. C.
Tetrahedron Lett. 1998, 39, 1295–1298.
Acknowledgments
34. Irving, M. M.; Kshirsagar, T.; Figliozzi, G. M.; Yan, B. J. Comb.
Chem. 2001, 3, 407–409.
35. Boldi, A. M.; Dener, J. M.; Hopkins, T. P. J. Comb. Chem. 2001, 3,
367–373.
36. Fang, L.; Demee, M.; Sierra, T.; Kshirsagar, T.; Celebi, A. A.; Yan,
B. J. Comb. Chem. 2002, 4, 362–368.
37. Bunin, B. A.; Dener, J. M.; Kelly, D. E.; Paras, N. A.; Tario, J. D.;
Tushup, S. P. J. Comb. Chem. 2004, 6, 487–496.
This work was supported by the US Army Medical
Research Acquisition Activity (W81XWH-04-2-0001) and
the National Institutes of Health/National Institute of
Allergy and Infectious Diseases (5R01AI054574-03).
The opinions or assertions contained herein belong to the
authors and are not necessarily the official views of the
US Army or the US National Institutes of Health.
38. Kamal, A.; Devaiah, V.; Reddy, K. L.; Rajendar; Shetti, R. V. C. R.
N. C.; Shankaraiah, N. J. Comb. Chem. 2007, 9, 267–274.
39. Procedure: the Marshall resin (1.6 mmol/g obtained from Aldrich
Chem. Co., Milwaukee, WI, catalog number 554804-5G) was loaded
into porous polypropylene containers, termed MicroKans (IRORI,
San Diego, CA), using the dry resin filler from IRORI (ꢁ0.05 mmol,
ꢁ30 mg of the resin per MicroKan). The resin-containing MicroKans
were shaken in DCM on an orbital shaker at room temperature for
10 min. Each member of a library of discrete carboxylic acids
(3.0 equiv), N,N0-diisopropylcarbodiimide (26 lL, 3.2 equiv), and 4-
di(methylamino)pyridine (6 mg, 0.9 equiv) were added to a labeled
resin-containing MicroKan. [Note: addition of 1 mL of dimethylform-
amide (DMF) was necessary to dissolve carboxylic acids of entries 3, 4,
11, and 13.] The resulting MicroKans were shaken on an orbital shaker
at room temperature for 20–30 h. The MicroKans were washed with
DMF (2 ꢀ 3 mL/MicroKan), methanol (3 mL/MicroKan), and DCM
(3 mL/MicroKan). The sequential washing with methanol and DCM
was repeated two more times. The MicroKans were dried under high
vacuum, and 100 lL of 50% hydroxylamine aqueous solution was then
added to each MicroKan soaked separatedly in 3 mL of DCM. The
resulting MicroKans were shaken on an orbital shaker at room
temperature for 17–24 h. Afterwards the organic layer was separated
from the aqueous layer by using a disposable pipette and concentrated
under N2 stream then further dried under high vaccum overnight to give
the desired hydroxamic acid. 1H NMR (400 MHz, DMSO-d6) spectra
of the products (purity: 74–97%) are as follows.
References and notes
1. El Yazal, J.; Pang, Y.-P. J. Phys. Chem. A 1999, 103, 8346–8350.
2. El Yazal, J.; Pang, Y.-P. J. Phys. Chem. B 2000, 104, 6499–6504.
3. Brown, S.; Meroueh, S. O.; Fridman, R.; Mobashery, S. Curr. Top.
Med. Chem. 2004, 4, 1227–1238.
4. Kelly, W. K.; Marks, P. A. Nat. Clin. Pract. Oncol. 2005, 2, 150–157.
5. Price, S.; Dyke, H. J. Expert Opin. Ther. Patents 2007, 17, 745–765.
6. Kehl, H. J. Am. Osteopath. Assoc. 1973, 72, 498–501.
7. Subissi, A.; Criscuoli, M.; Sardelli, G.; Guelfi, M.; Giachetti, A.
J. Cardiovasc. Pharmacol. 1992, 20, 139–146.
8. MacPherson, L. J.; Bayburt, E. K.; Capparelli, M. P.; Bohacek, R. S.;
Clarke, F. H.; Ghai, R. D.; Sakane, Y.; Berry, C. J.; Peppard, J. V.;
Trapani, A. J. J. Med. Chem. 1993, 36, 3821–3828.
9. Dhawan, S.; Wahl, L. M.; Heredia, A.; Zhang, Y.; Epstein, J. S.;
Meltzer, M. S.; Hewlett, I. K. J. Leukoc. Biol. 1995, 58, 713–716.
10. Tournaire, R.; Arnaud, S.; Hamedi-Sangsari, F.; Malley, S.; Grange,
J.; Blanchet, J. P.; Dore, J. F.; Vila, J. Leukemia 1994, 8, 1703–1707.
11. Parvathy, S.; Hussain, I.; Karran, E. H.; Turner, A. J.; Hooper, N. M.
Biochem. Soc. Trans. 1998, 26, S 242.
12. Park, J. G.; Sill, P. C.; Makiyi, E. F.; Garcia-Sosa, A. T.; Millard, C.
B.; Schmidt, J. J.; Pang, Y.-P. Bioorg. Med. Chem. 2006, 14, 395–408.
13. Tang, J.; Park, J. G.; Millard, C. B.; Schmidt, J. J.; Pang, Y.-P. PLoS
ONE 2007, 2, e761.
14. Nicolaou, K. C.; Xiao, X.-Y.; Parandoosh, Z.; Senyei, A.; Nova, M.
P. Angew. Chem., Int. Ed. Engl. 1995, 34, 2289.
N-Hydroxy-2-(thiophen-3-yl)acetamide (entry 1): d 10.61 (s, 1H), 8.81
(s, 1H), 7.44 (dd, J = 4.9, 2.9 Hz, 1H), 7.22 (m, 1H), 7.00 (d, J = 4.9 Hz,
1H), and 3.28 (s, 2H).
15. Park, J. G.; Langenwalter, K. J.; Weinbaum, C. A.; Casey, P. J.;
Pang, Y.-P. J. Comb. Chem. 2004, 6, 407–413.
N-Hydroxy-2-phenylacetamide (entry 2): d 10.64 (s, 1H), 8.81 (s, 1H),
7.22 (m, 5H), and 3.25 (s, 2H).