ACS Catalysis
Letter
(13) (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826.
(b) Albrecht, M. Chem. Rev. 2010, 110, 576.
AUTHOR INFORMATION
■
Corresponding Author
(14) (a) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41,
222. (b) Garralda, M. A. Dalton Trans. 2009, 3635. (c) Jia, X.; Zhang,
S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120. (d) Chan,
C.-W.; Zhou, Z.; Chan, A. S. C.; Yu, W.-Y. Org. Lett. 2010, 12, 3926.
(e) Santhoshkumar, R.; Mannathan, S.; Cheng, C.-H. J. Am. Chem. Soc.
2015, 137, 16116.
(15) The complete structural assignment of 5 was very difficult
because the peaks due to styrene and unreacted benzaldehyde
overlapped with the peaks for 5. The complex 5 also slowly
decomposes at room temperature within 12 h.
(16) (a) Kakiuchi, F.; Chatani, N. In Topics in Organometallic
Chemistry: Ruthenium Catalysts and Fine Chemistry; Bruneau, C.,
Dixneuf, P. H., Eds; Springer-Verlag: Berlin, 2004, Vol. 11, pp 45−79.
(b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112,
5879.
(17) As indicated earlier, we have previously found that the complex
1 is an exceptionally effective catalyst for the olefin isomerization
reaction (ref 12). The observed deuterium scrambling pattern can be
readily explained by an olefin isomerization mechanism, as illustated in
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the National Science of Foundation
(CHE-1358439) and the National Institute of Health General
Medical Sciences (R15 GM109273) is gratefully acknowledged.
We thank Dr. Sheng Cai for help in running the NMR
experiments on the characterization of 5.
REFERENCES
■
(1) Recent reviews: (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
(b) Willis, M. C. Chem. Rev. 2010, 110, 725. (c) Leung, J. C.; Krische,
M. J. Chem. Sci. 2012, 3, 2202.
(2) (a) Bosnich, B. Acc. Chem. Res. 1998, 31, 667. (b) Kundu, K.;
McCullagh, J. V.; Morehead, A. T., Jr. J. Am. Chem. Soc. 2005, 127,
16042. (c) Murphy, S. K.; Bruch, A.; Dong, V. M. Angew. Chem., Int.
Ed. 2014, 53, 2455. (d) Chen, Q.-A.; Kim, D. K.; Dong, V. M. J. Am.
Chem. Soc. 2014, 136, 3772.
(3) (a) Marder, T. B.; Roe, D. C.; Milstein, D. Organometallics 1988,
7, 1451. (b) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. J. Org.
Chem. 1990, 55, 1286. (c) Lenges, C. P.; Brookhart, M. J. Am. Chem.
Soc. 1997, 119, 3165. (d) Lenges, C. P.; White, P. S.; Brookhart, M. J.
Am. Chem. Soc. 1998, 120, 6965.
(18) Ryu and co-workers proposed an alternate mechanism via a π-
allyl-ruthenium species to explain Markovnikov selectivity for the
hydroacylation of dienes.7b We cannot rigorously eliminate this
mechanistic possibility, although it cannot readily explain the detection
of the Ru-acyl species.
(4) (a) Jun, C.-H.; Lee, D.-Y.; Lee, H.; Hong, J.-B. Angew. Chem., Int.
Ed. 2000, 39, 3070. (b) Jun, C.-H.; Moon, C. W.; Lee, D.-Y. Chem. -
Eur. J. 2002, 8, 2422. (c) Willis, M. C.; McNally, S. J.; Beswick, P. J.
Angew. Chem., Int. Ed. 2004, 43, 340. (d) von Delius, M.; Le, C. M.;
Dong, V. M. J. Am. Chem. Soc. 2012, 134, 15022.
(5) (a) Suggs, J. W. J. Am. Chem. Soc. 1979, 101, 489. (b) Jun, C.-H.;
Lee, H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200. (c) Jun, C.-H.; Huh,
C.-W.; Na, S.-J. Angew. Chem., Int. Ed. 1998, 37, 145. (d) Yang, J.; Seto,
Y. W.; Yoshikai, N. ACS Catal. 2015, 5, 3054.
(6) Anti-Markovnikov selective hydroacylation with with nonchelate-
assisted aldehydes: (a) Tanaka, K.; Shibata, Y.; Suda, T.; Hagiwara, Y.;
Hirano, M. Org. Lett. 2007, 9, 1215. (b) Shibata, Y.; Tanaka, K. J. Am.
Chem. Soc. 2009, 131, 12552.
(7) (a) Tanaka, M.; Imai, M.; Yamamoto, Y.; Tanaka, K.;
Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. Org. Lett.
2003, 5, 1365. (b) Omura, S.; Fukuyama, T.; Horiguchi, J.; Murakami,
Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094. (c) Shibahara, F.;
Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 14120.
(d) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009,
131, 14190. (e) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V.
M. J. Am. Chem. Soc. 2010, 132, 16330. (f) Murphy, S. K.; Petrone, D.
A.; Coulter, M. M.; Dong, V. M. Org. Lett. 2011, 13, 6216. (g) Murphy,
S. K.; Bruch, A.; Dong, V. M. Chem. Sci. 2015, 6, 174.
(8) (a) Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.;
Whelan, J.; Bosnich, B. J. Am. Chem. Soc. 1994, 116, 1821. (b) Kim, I.
S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 6340.
(c) Coulter, M. M.; Dornan, P. K.; Dong, V. M. J. Am. Chem. Soc.
2009, 131, 6932. (d) Piel, I.; Steinmetz, M.; Hirano, K.; Frohlich, R.;
̈
Grimme, S.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 4983.
(e) Hoffman, T. J.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50,
10670. (f) Yang, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 16748.
(9) Xiao, L.-J.; Fu, X.-N.; Zhou, M.-J.; Xie, J.-H.; Wang, L.-X.; Xu, X.-
F.; Zhou, Q.-L. J. Am. Chem. Soc. 2016, 138, 2957.
(10) (a) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. Science 2011, 333, 1613.
(b) Lee, D.-H.; Kwon, K.-H.; Yi, C. S. J. Am. Chem. Soc. 2012, 134,
7325. (c) Kim, J.; Lee, D.-H.; Kalutharage, N.; Yi, C. S. ACS Catal.
2014, 4, 3881.
(11) Lee, H.; Yi, C. S. Eur. J. Org. Chem. 2015, 1899.
(12) Lee, D. W.; Yi, C. S. Organometallics 2010, 29, 3413.
3339
ACS Catal. 2016, 6, 3336−3339