128
C. G. Nasveschuk, T. Rovis
LETTER
HO
1) TMSOTf, EtCN, –78 °C
2) NaBH4, MeOH
O
O
O
OMe
OMe
3) OsO4, NMO
acetone–t-BuOH–H2O (4:1:1)
4) NaIO4, THF–H2O (5:1)
MeO
OMe
( )-sylvone (1)
O
OMe
7
MeO
MeO
OMe
MeO
OMe
4 steps, 85%
6 steps LLS, 33% overall
Scheme 3 Completion of ( )-sylvone
(10) 2-(3,4-Dimethoxyphenyl)-4,7-dihydro[1,3]dioxepine (5):
1H NMR (400 MHz, CDCl3): d = 7.08–7.02 (2 H, m), 6.84
(1 H, d, J = 8.1 Hz), 5.79 (1 H, s), 5.75 (2 H, s), 4.41–4.19 (4
H, m), 3.88 (3 H, s), 3.86 (3 H, s). 13C NMR (100 MHz,
CDCl3): d = 149.2, 148.9, 131.8, 130.2, 118.9, 110.8, 109.7,
102.3, 64.7, 56.1. IR (NaCl dep. from CHCl3): 2942, 2837,
1516, 1259, 1160, 777 cm–1.
ran core as a route to any member of this family of natural
products.
Acknowledgment
We thank Merck, Eli Lilly, Johnson and Johnson and Boehringer-
Ingelheim for support. T.R. is a fellow of the Alfred P. Sloan Foun-
dation. T.R. thanks the Monfort Family Foundation for a Monfort
Professorship.
(11) For a procedure to prepare 6, see: Scannell, R. T.; Stevenson,
R. J. Heterocycl. Chem. 1980, 17, 1727.
(12) Vinyl iodide 6 is consumed in these reactions. Small
amounts of dioxepin 5 could be re-isolated (ca. 20%).
(13) 2-(3,4-Dimethoxyphenyl)-5-[1-(3,4,5-trimethoxy-
phenyl)vinyl]-4,5-dihydro[1,3]dioxepine (7): 1H NMR
(400 MHz, CDCl3): d = 7.08–7.02 (2 H, m), 6.84 (1 H, d,
J = 8.3 Hz), 6.62 (2 H, s), 6.53 (1 H, dd, J = 7.5, 3.0 Hz),
5.49 (1 H, s), 5.38 (1 H, s), 5.19 (1 H, s), 5.01 (1 H, d, J = 7.3
Hz), 4.23 (1 H, d, J = 11.5, 4.5 Hz), 3.94–3.82 (16 H, m),
3.38 (1 H, dd, J = 11.1, 11.1 Hz). 13C NMR (100 MHz,
CDCl3): d = 153.3, 149.6, 149.1, 148.4, 145.3, 138.2, 136.9,
131.6, 118.7, 114.2, 113.3, 110.9, 109.0, 106.4, 103.9, 74.4,
61.1, 56.4, 56.2, 56.1, 46.9. IR (NaCl dep. from CHCl3):
2937, 2836, 1645, 1411, 1128, 732 cm–1. HRMS (+TOF
MS): m/z calcd for C24H29O7 [M + H]+: 429.1908; found:
429.1893.
(14) Procedure for the Stereoselective Ring Contraction of 7
A flame-dried round-bottomed flask was purged with argon
then charged with propionitrile (0.1 M with respect to 1,3-
dioxepin) and 0.1 equiv of TMSOTf. The solution was
cooled to –78 °C. A separate flame-dried round-bottomed
flask was purged with argon and charged with propionitirile
(0.1 M with respect to 1,3-dioxepin) and 1 equiv of 7. The
solution was then cooled to –78 °C. The solution containing
7 was transferred via cannula to the solution containing
Lewis acid at an approximate rate of 1 mL/min. The solution
was allowed to mix for 1 h at –78 °C. When the reaction was
complete the Lewis acid was quenched with 1 equiv of Et3N
and subsequently poured into sat. aq NaHCO3. The aqueous
layer was extracted with Et2O (3 ×), then the organic layer
was dried with MgSO4. After filtration the solvent removed
in vacuo and the crude product was carried through the
remainder of the synthetic steps to afford ( )-sylvone 1.
(15) ( )-Sylvone (1)
References and Notes
(1) For reviews concerning lignans, see: (a) MacRae, W. D.;
Towers, G. H. N. Phytochemistry 1984, 23, 1207.
(b) Whiting, D. A. Nat. Prod. Rep. 1987, 4, 499. (c) Ward,
R. S. Nat. Prod. Rep. 1993, 10, 1. (d) Ward, R. S. Nat. Prod.
Rep. 1995, 12, 183. (e) Ward, R. S. Nat. Prod. Rep. 1997,
14, 43. (f) Ward, R. S. Nat. Prod. Rep. 1997, 16, 75.
(2) For reviews on the strategies of oxacycle synthesis, see:
(a) Faul, M. M.; Huff, B. E. Chem. Rev. 2000, 100, 2407.
(b) Elliott, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 2301.
(3) For methods resulting in a total synthesis of a furofuran
lignan, see: (a) Takano, S.; Samizu, K.; Ogasawara, K.
Synlett 1993, 785. (b) Akindele, T.; Marsden, S. P.;
Cumming, J. G. Org. Lett. 2005, 7, 3685. (c) Wardrop, D.
J.; Fritz, J. Org. Lett. 2006, 8, 3659. (d) Review: Brown,
R.; Swain, N. A. Synthesis 2004, 811.
(4) (a) Cassidy, J. H.; Marsden, S. P.; Stemp, G. Synlett 1997,
1411. (b) Miles, S. M.; Marsden, S. P.; Leatherbarrow, R. J.;
Coates, W. J. J. Org. Chem. 2004, 69, 6874.
(5) (a) Zhang, Y.; Reynolds, N. T.; Manju, K.; Rovis, T. J. Am.
Chem. Soc. 2002, 124, 9720. (b) Zhang, Y.; Rovis, T.
Tetrahedron Lett. 2003, 59, 8979. (c) Nasveschuk, C. G.;
Rovis, T. Org. Lett. 2005, 7, 2173. (d) Nasveschuk, C. G.;
Rovis, T. Angew. Chem. Int. Ed. 2005, 44, 3264. (e) Frein,
J. D.; Rovis, T. Tetrahedron 2006, 62, 4573.
(6) Nasveschuk, C. G.; Jui, N. T.; Rovis, T. Chem. Commun.
2006, 3119.
(7) (a) Banerji, A.; Sarkar, M.; Ghosal, T.; Pal, S. C.; Shoolery,
J. N. Tetrahedron 1984, 40, 5047. (b) Banerji, A.; Basu, S.
J. Indian Chem. Soc. 1992, 69, 321.
1H NMR (400 MHz, CDCl3): d = 7.41 (2 H, s), 6.84 (3 H, m),
5.03, (1 H, d, J = 6.0 Hz), 4.43 (1 H, dd, J = 7.9, 7.9 Hz),
4.31 (1 H, ddd, J = 7.7, 5.8, 2.8 Hz), 4.24 (1 H, dd, J = 8.1,
5.8 Hz), 3.96–3.77 (15 H, m), 3.41 (2 H, d, J = 6.4 Hz), 2.89
(1 H, ddd, J = 6.2, 6.0, 2.8 Hz), 1.40 (1 H, br s). 13C NMR
(100 MHz, CDCl3): d = 198.7, 153.3, 149.1, 148.4, 142.9,
131.5, 130.6, 117.9, 111.2, 108.9, 106.4, 81.5, 69.1, 62.1,
61.1, 56.4, 56.0, 56.0, 49.9, 48.9. IR (NaCl dep. from
CHCl3): 3516, 2941, 1673, 1516, 1127, 731 cm–1. MS (EI+):
m/z calcd for C23H28O8 [M + H]+: 433.2; found: 433.3.
(8) For reports that discuss the bioactivity of lignans, see:
(a) Chen, I.-S.; Chen, J.-J.; Duh, C.-Y.; Tsai, I.-L.
Phytochemistry 1997, 45, 991. (b) Parmar, V. S.; Jain, S. C.;
Bisht, K. S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O. D.;
Prasad, A. K.; Wengel, J.; Olsen, C. E.; Boll, P. M.
Phytochemistry 1997, 46, 597.
(9) (a) Maioli, A. T.; Civiello, R. L.; Foxman, B. M.; Gordon, D.
M. J. Org. Chem. 1997, 62, 7413. (b) Yoda, H.; Kimura, K.;
Takabe, K. Synlett 2001, 400.
Synlett 2008, No. 1, 126–128 © Thieme Stuttgart · New York