C O M M U N I C A T I O N S
Scheme 2. Reaction of 5a with Dibenzyl Azodicarboxylate
Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 4433 and references
therein. (b) For [Pd] (c) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem.
Res. 2001, 34, 633. (d) Fujiwara, Y.; Takaki, K.; Taniguchi, Y. Synlett
1996, 7, 591. For [Rh] (e) Kokubo, K.; Matsumasa, K.; Miura, M.;
Nomura, M. J. Org. Chem. 1996, 61, 6941. For [Co], [Mo], and [Cr] (f)
Mori, Y.; Tsuji, J. Tetrahedron 1971, 27, 3811.
(5) For recent examples (a) Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem.
Soc. 2007, 129, 6066. (b) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J.
Am. Chem. Soc. 2007, 129, 9879. (c) Giri, R.; Maugel, N.; Li, J.-J.; Wang,
D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc.
2007, 129, 3510. (d) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu,
J.-Q. J. Am. Chem. Soc. 2006, 128, 78. (e) Chen, X.; Goodhue, C. E.;
Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 12634. (f) Lazareva, A.; Daugulis,
O. Org. Lett. 2006, 8, 5211. (g) Zaitsev, V. G.; Shabashov, D.; Daugulis,
O. J. Am. Chem. Soc. 2005, 127, 13154. (h) Kalyani, D.; Deprez, N. R.;
Desai, L. V.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330. (i)
Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.
(6) For selected examples, see (a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am.
Chem. Soc. 2006, 128, 9048. (b) Dick, A. R.; Remy, M. S.; Kampf, J.
W.; Sanford, M. S. Organometallics 2007, 26, 1365. (c) Kalyani, D.; Dick,
A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523. (d) Hull,
K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134.
(e) Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391.
(f) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112.
(g) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004,
126, 9542. (h) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2004, 126, 2300.
Scheme 3. Proposed Mechanism
radical. As such, dibenzyl carbonate was produced by combin-
ing the benzyloxyacyl radicals with the benzyloxy radical (Scheme
2).
On the basis of the above findings, the catalytic reaction should
be initiated by cyclopalladation of the ortho-C-H bond to form a
palladacycle. The palladacycle subsequently reacts with the ethoxy-
acyl radicals, generated from thermal decomposition of DEAD,
to afford the product esters (Scheme 3). At this stage, the mechan-
ism for the radical insertion reaction to palladacycles remains
unclear.17 Indeed, systemic mechanistic studies on radical addition
(7) For reviews, see (a) Dupont, J.; Consorti, C. S.; Spenser, J. Chem. ReV.
2005, 105, 2527. (b) Ryabov, A. D. Synthesis 1985, 233.
(8) Treatment of 1a with [Ru3(CO)12] (5 mol%) and DEAD in toluene did
not produce 2a in detectable yield with the starting material being
recovered (87%).
to organometallic complexes are sparse in the literature.17,18
A
(9) Genet, J.-P.; Greck, C.; Lavergne, D. In Modern Amination Method; Ricci,
A., Ed.; Wiley-VCH: Weinheim, Germany, 2000; Chapter 3, p 65. Muniz
and co-workers recently reported a Pd-catalyzed addition of PhB(OH)2
to dibenzyl azodicarboxylate: Muniz, K.; Iglesias, A. Angew. Chem., Int.
Ed. 2007, 46, 6350.
plausible pathway for the radical insertion to Pd-C bond would
be via formation of Pd(IV) species19 especially under oxidizing
conditions, 5h,g,6h and that would be a subject for further investiga-
tion.
(10) See Supporting Information for details.
(11) During our examination of Cu(OAc)2 as the oxidant, EtO2CNH-NHCO2-
Et (X-ray structure characterized) was isolated asa side-product in 52%
yield from the Pd-catalyzed reaction of 1a with DEAD.
Acknowledgment. We thank the financial support from The
Hong Kong Polytechnic University (ASD Fund) and The Areas of
Excellence Scheme (Grant AoE/P-10-01) administered by the Hong
Kong Research Grants Council.
(12) Similar regioselectivity was also reported by Sanford and co-workers for
Pd-catalyzed acetoxylation of arylpyridines: Kalyani, D.; Sanford, M. Org.
Lett. 2005, 7, 4149. See also refs 5, 6a, and 6c
(13) This result may suggest that the higher reactivity of DEAD relative to
other azodicarboxylates could have led to the higher product yields
observed (see Supporting Information).
(14) We also obtained an unknown oily substance which accounts for 49% of
the total mass of the azodicarboxylate. The 13C NMR analysis of the
unknown revealed a characteristic carbonyl signal at 155.8 ppm, which
is unique from dibenzyl carbonate and dibenzyl oxalate. A similar product
profile was observed for thermal decomposition of dibenzyl azodicar-
boxylate.
Supporting Information Available: Experimental procedures,
characterization data, and experimental data for reaction optimization.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(15) (a) Alberti, A.; Hudson, A. Tetrahedron Lett. 1982, 23, 453. (b) Roberts,
B. P.; Winter, J. N. Tetrahedron Lett. 1979, 20, 3575. (c) Malatesta, V.;
Ingold, K. U. Tetrahedron Lett. 1973, 14, 3311.
References
(1) For general reviews, see (a) Colquhoun, H. M.; Thomson, D. J.; Twigg,
M. V. Carbonylation: Direct Synthesis of Carbonyl Compounds; Plenum
Press: New York, 1991. (b) Tsuji, J. Palladium Reagents and Catalysis:
InnoVation in Organic Synthesis; John Wiley & Sons: Chichester, U.K.,
1995. (c) Tkatchenko, I. ComprehensiVe Organometallic Chemistry;
Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press:
Oxford, U.K., 1982; Vol. 8, pp 101-223.
(16) For alternative routes to alkoxyacyl radical formation: (a) Morihovitis,
T.; Schiesser, C. H.; Skidmore, M. A. J. Chem. Soc., Perkin Trans. 2
1999, 2041. (b) Lucas, M. A.; Schiesser, C. H. J. Org. Chem. 1996, 61,
5754.
(17) For a review see Torraca, K. E.; McElwee-White, L. Coord. Chem. ReV.
2000, 206-207, 469.
(2) Some recent reviews on C-H functionalizations, see (a) Alberico, D.; Scott,
M. E.; Lautens, M. Chem. ReV. 2007, 107, 174. (b) Dick, A. R.; Sanford,
M. S. Tetrahedron 2006, 62, 2439. (c) Yu, J.-Q.; Giri, R.; Chen, X. Org.
Biomol. Chem. 2006, 4, 4041. (c) Kakiuchi, F.; Chatani, N. AdV. Synth.
Catal. 2003, 345, 1077. (d) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV.
2002, 102, 1731. (e) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698.
(f) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97, 2879.
(3) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi,
M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126, 14342.
(4) Selected examples for transition metal catalyzed direct carbonylation
reactions: for [Ru] (a) Asaumi, T.; Matsuo, T.; Fukuyama, T.; Ie, Y.;
(18) Recent reports on metal catalyzed alkane carbonylation by a free-radical
mechanism: (a) Boese, W. T.; Goldman, A. S. J. Am. Chem. Soc. 1992,
114, 350. (b) Boese, W. T.; Goldman, A. S. Tetrahedron Lett. 1992, 33,
2119.
(19) For a review on PdIV chemistry, see (a) Canty, A. J. Acc. Chem. Res.
1992, 25, 83. For recent examples, see: (b) Welbes, L. L.; Lyons, T. W.;
Cychosz, K. A.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 5836. (c)
Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129, 4906. (d)
Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924.
JA710555G
9
3306 J. AM. CHEM. SOC. VOL. 130, NO. 11, 2008