paradigm for palladacycle catalysis chemistry and may
provide powerful catalyst systems for organic synthesis. In
this letter, we established that Type I palladacycles could
indeed act as efficient catalysts for such addition reactions,
specifically, the 1,4-addition of arylboronic acids with R,â-
unsaturated ketones and the 1,2-additions of arylboronic acids
with aldehydes and R-ketoesters.
Scheme 1. Cross-Couplings vs Hypothetic Addition Reactions
for Type I Palladacycles
We began our study by testing reported palladacycles 1-3
for the room temperature 1,4-addition of phenylboronic acid
with chalcone, and our results are listed in Table 1. We found
(0) species (Path A), A might coordinate with a carbonyl
moiety to form complexes B (Path B) (Scheme 1). On the
basis that elevated temperature, typically higher than 100
°C, was required for palladacycles to generate catalytically
active species for cross-coupling reactions,1 we surmised that
the reductive elimination of A should be slow, especially at
lower temperature. We further envisioned that at lower
reaction temperature, such as room temperature, B might
undergo aryl transfer to form addition products much faster
than reductive elimination to form cross-coupling products
(Scheme 1), and Type I palladacycles could thus catalyze
addition reactions of arylboronic acids to carbonyl group-
containing compounds,4-6 a field that is currently dominated
by Rh(I) catalysis chemistry.7-12 The exploration of such
palladacycle-catalyzed addition reactions would create a new
Figure 2. Tested palladacycles.
although palladacycle 113 showed no catalytic activity (Table
1, entry 1), palladacycles 214 and 315 gave encouraging
1673-1679. (k) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J.
Am. Chem. Soc. 2003, 125, 11508-11509. With monophosphines and
bisphosphines ligands: (l) Vandyck, K.; Matthys, B.; Willen, M.; Robeyns,
K.; Van Meervelt, L.; Van der Eycken, J. Org. Lett. 2006, 8, 363-366.
(m) Shimada, T.; Suda, M.; Nagano, T.; Kakiuchi, K. J. Org. Chem. 2005,
70, 10178-10181. (n) Stemmler, R. T.; Bolm, C. J. Org. Chem. 2005, 70,
9925-9931. (o) Chen, G.; Tokunaga, N.; Hayashi, T. Org. Lett. 2005, 7,
2285-2288. (p) Yuan, W.-C.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang,
Y.-Z. Tetrahedron Lett. 2005, 46, 509-512. With phosphoramidites as
ligands: (q) Mediavilla, U. L.; Krause, N. Tetrahedron: Asymmetry 2006,
17, 494-496. (r) Yamamoto, Y.; Kurihara, K.; Sugishita, N.; Oshita, K.;
Piao, D.; Miyaura, N. Chem. Lett. 2005, 34, 1224-1225. (s) Duursma, A.;
Pena, D.; Minnaard, A. J.; Feringa, B. L. Tetrahedron: Asymmetry 2005,
16, 1901-1904. (t) Duursma, A.; Boiteau, J.-G.; Lefort, L.; Boogers, J. A.
F.; De Vries, A. H. M.; De Vries, J. G.; Minnaard, A. J.; Feringa, B. L. J.
Org. Chem. 2004, 69, 8045-8052. With phosphine-olefin bidentate
ligands: (u) Shintani, R.; Duan, W.-L.; Nagano, T.; Okada, A.; Hayashi,
T. Angew. Chem., Int. Ed. 2005, 44, 4611-4614.
(4) For palladium-catalyzed 1,4-additions of arylboronic acids with R,â-
unsaturated compoundssfor Pd(0)/SbCl3 catalyst:Pd(0)/SbCl3 catalyst: (a)
Cho, C. S.; Motofusa, S.; Ohe, K.; Uemura, S. J. Org. Chem. 1995, 60,
883-888. For cationic Pd(II) catalysts: (b) Nishikata, T.; Yamamoto, Y.;
Gridnev, I. D.; Miyaura, N. Organometallics 2005, 24, 5025-5032. (c)
Nishikata, T.; Yamamoto, Y.; Miyaura, N. Organometallics 2004, 23, 4317-
4324. Nishikata, T.; Yamamoto, Y.; Miyaura, N. Chem. Lett. 2005, 34,
720-721. (d) Nishikata, T.; Yamamoto, Y.; Miyaura, N. Angew. Chem.,
Int. Ed. 2003, 42, 2768-2770. For Pd(OAc)2/pyridine catalyst: (e) Lu, X.;
Lin, S. J. Org. Chem. 2005, 70, 9651-9653. For Pd(OCOCF3)2/(R,R)-Me-
Duphos catalyst: (f) Gini, F.; Hessen, B.; Minnaard, A. J. Org. Lett. 2005,
7, 5309-5312. For Pd(0)/PPh3/CHCl3 catalyst: (g) Yamamoto, T.; Iizuka,
M.; Ohta, T.; Ito, Y. Chem. Lett. 2006, 35, 198-199.
(5) (a) For Pd(0)/PPh3/CHCl3-catalyzed 1,2-addition of arylboronic acids
with aldehydes at elevated temperature: Yamamoto, T.; Ohto, T.; Ito, Y.
Org. Lett. 2005, 7, 4153-4155. (b) A 3% yield of 1,2-addition product
was observed during the cross-coupling of phenylboronic acid with
3-methoxy-4-tosyloxybenzaldehyde catalyzed by Pd(OAc)2/Buchwald’s,
biarylphosphine: Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem.
Soc. 2003, 125, 11818-1819.
(6) One example of 1,2-addition products of phenylboronic acid with
p-chlorobenzaldehyde, formed as byproducts during the cross-coupling
reaction catalyzed by a palladacycle at 130 °C, was previously reported:
Gibson, S.; Foster, D. F.; Eastham, G. R.; Tooze, R. P.; Cole-Hamilton, D.
J. Chem. Commun. 2001, 779-780.
(7) For recent reviews on Rh(I)-catalyzed addition reactions of aryl-
boronic acids with carbonyl-containing compounds: (a) Glorius, F. Angew.
Chem., Int. Ed. 2004, 43, 3364-3366. (b) Hayashi, T.; Yamasaki, K. Chem.
ReV. 2003, 103, 2829-2844. (c) Fagnou, K.; Lautens, M. Chem. ReV. 2003,
103, 169-196 and references cited therein.
(8) Selected recent examples of Rh(I)-catalyzed 1,4-additions of aryl-
boronic acids with R,â-unsaturated compoundsswith chiral dienes as
ligands: (a) Trenkle, W. C.; Barkin, J. L.; Son, S. U.; Sweigart, D. A.
Organometallics 2006, 25, 3548-3551. (b) Chen, F.-X.; Kina, A.; Hayashi,
T. Org. Lett. 2006, 8, 341-344. (c) Shintani, R.; Duan, W.-L.; Hayashi, T.
J. Am. Chem. Soc. 2006, 128, 5628-5629. (d) Hayashi, T.; Tokunaga, N.;
Okamoto, K.; Shintani, R. Chem. Lett. 2005, 34, 1480-1481. (e) Paquin,
J.-F.; Stephenson, C. R. J.; Defieber, C.; Carreira, E. M. Org. Lett. 2005,
7, 3821-3824. (f) Shintani R.; Kimura T.; Hayashi T. Chem. Commun.
2005, 3213-3214. (g) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi,
T. J. Org. Chem. 2005, 70, 2503-2508. (h) Laeng, F.; Breher, F.; Stein,
D.; Gruetzmacher, H. Organometallics 2005, 24, 2997-3007. (i) Shintani,
R.; Okamoto, K.; Hayashi, T. Org. Lett. 2005, 7, 4757-4759. (j) Otomaru,
Y.; Kina, A.; Shintani, R.; Hayashi, T. Tetrahedron: Asymmetry 2005, 16,
(9) For room temperature Rh(I)-catalyzed 1,2-addition of arylboronic
acids with aldehydes: (a) Duan, H.-F.; Xie, J.-H.; Shi, W.-J.; Zhang, Q.;
Zhou, Q.-L. Org. Lett. 2006, 8, 1479-1481. (b) Ueda, M.; Miyaura, N. J.
Org. Chem. 2000, 65, 4450-4452. For Rh(I)-catalyzed addition of
arylboronic acids with aldehydes at elevated temperature: (c) Jagt, R. B.
C.; Toullec, P. Y; de Vries, J. G.; Feringa, B. L; Minnaard, A. J. Org.
Biomol. Chem. 2006, 4, 773-775. (d) Chen, J.; Zhang, X.; Feng, Q.; Luo,
M. J. Organomet. Chem. 2006, 691, 470-474. (e) Focken, T.; Rudolph,
J.; Bolm, C. Synthesis 2005, 429-436. (f) Ozdemir, I.; Demir, S.; Cetinkaya,
B. J. Mol. Catal. A: Chem. 2004, 215, 45-48. (g) Moreau, C.; Hague, C.;
Weller, A. S.; Frost, C. G. Tetrahedron Lett. 2001, 42, 6957-6960. (h)
Pourbaix, C.; Carreaux, F.; Carboni, B. Org. Lett. 2001, 3, 803-805. (i)
Furstner, A.; Krause, H. AdV. Synth. Catal. 2001, 343, 343-350. (j) Batey,
R. A.; Thadani, A. N.; Smil, D. V. Org. Lett. 1999, 1, 1683-1686. (k)
Aakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. 1998, 37, 3279-
3281.
(10) (a) Toullec, P. Y.; Jagt, R. B. C.; de Vries, J. G.; Feringa, B. L.;
Minnaard, A. J. Org. Lett. 2006, 8, 2715-2718. (b) Shintani, R.; Inoue,
M.; Hayashi, T. Angew. Chem., Int. Ed. 2006, 45, 3353-3356.
(11) For Rh(I)-catalyzed tandem reactions: (a) Bocknack, B. M.; Wang,
L.-C.; Krische, M. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5421-5424.
(b) Cauble, D. F.; Gipson, J. D.; Krische, M. J. J. Am. Chem. Soc. 2003,
125, 1110-1111.
(12) For a report on the Ni-catalyzed addition reaction of arylboronic
acids with aldehydes: Takahashi, G.; Shirakawa, E.; Tsuchimoto, T.;
Kawakami, Y.; Ishikawa, T, Chem. Commun. 2005, 1459-1461.
(13) Izumi, T.; Watabe, H.; Kasahara, A. Bull. Chem. Soc. Jpn. 1981,
54, 1711-1714.
(14) Beller, M.; Fischer, H.; Herrmann, W. A.; O¨ fele, K.; Brossmer, C.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1848-1849.
(15) Zim, D.; Buchwald, S. L. Org. Lett. 2003, 5, 2413-2415.
344
Org. Lett., Vol. 9, No. 2, 2007