Synthesis of O, N, or S-Containing Ring Fused Heterocycles
A R T I C L E S
the advantages of both homogeneous and heterogeneous cata-
lysts.6,7 In fact, from the beginning, catalysis has been recognized
as one of the most valuable applications of dendrimers. The
key property of dendritic catalysts is their recovery and reuse
by microfiltration8 or precipitation9 under specific conditions.
Soluble dendritic catalysts have been successfully applied to a
variety of organic reactions.8-10 However, relatively few
examples involve insoluble dendritic catalysts.11 For instance,
Dahan and Portnoy11a described the intramolecular Pauson-
Khand reaction catalyzed by heterogeneous metallodendrimers.
Sellner and Seebach11b investigated the use of polymer-
supported chiral dendrimers for the enantioselective addition
of diethylzinc to benzaldehyde. Recently, we reported that
heterogeneous dendrimer-rhodium complexes are highly ef-
ficient catalysts for the hydroformylation of olefins at room
temperature. The systems can be easily recovered by simple
filtration in air and reused without loss of activity and
selectivity.12 These results stimulated us to explore intramo-
lecular carbonylation reactions with recyclable palladium-
complexed dendrimers on silica to form oxygen, nitrogen, or
sulfur-containing medium ring fused heterocycles. We now
demonstrate that heterogeneous dendrimer-palladium com-
plexes are very effective catalysts for the synthesis of seven-
and eight-membered ring fused heterocycles in excellent yields.
(6) For seleted references on dendrimers, see: (a) Garcia-Martinez, J. C.;
Lezutekong, R.; Crooks, R. M. J. Am. Chem. Soc. 2005, 127, 5097-5103.
(b) Landskron, K.; Ozin, G. A. Science 2004, 306, 1529-1532. (c) Delort,
E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642-
15643. (d) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel,
A.; Voit, B.; Pyun, J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 43, 3928-3932. (e) Lang, H.; May, R. A.;
Iversen, B. L.; Chandler, B. D. J. Am. Chem. Soc. 2003, 125, 14832-
14836. (f) Tomalia, D. A.; Frechet, J. M. J. J. Polym. Sci., Part A: Polym.
Chem. 2002, 40, 2719-2728. (g) Grayson, S. M.; Frechet, J. M. J. Chem.
ReV. 2001, 101, 3819-3867. (h) Tully, D. C.; Frechet, J. M. J. Chem.
Commun. 2001, 1229-1239. (i) Newkome, G. R.; Moorefield, C. N.;
Vogtle, F. Dendritic Molecules: Concepts, Synthesis, PerspectiVes; VCH:
Weinheim, Germany, 1996.
(7) For reviews on dendritic catalysts, see: (a) Scott, R. W. J.; Wilson, O. M.;
Crooks, R. M. J. Phys. Chem. B 2005, 109, 692-704. (b) Dahan, A.;
Portnoy, M. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 235-262. (c)
van Heerbeek, R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N.
H. Chem. ReV. 2002, 102, 3717-3756. (d) Twyman, L. J.; King, A. S. H.;
Martin, I. K. Chem. Soc. ReV. 2002, 31, 69-82. (e) Astruc, D.; Chardac,
F. Chem. ReV. 2001, 101, 2991-3023. (f) Oosterom, G. E.; Reek, J. N.
H.; Kamer, P. C. J.; van Leeuwen, P. W. N. W. Angew. Chem., Int. Ed.
2001, 40, 1828-1849. (g) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.;
Yeung, L. K. Acc. Chem. Res. 2001, 34, 181-190.
(8) (a) de Groot, D.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M. Eur. J. Org. Chem. 2002, 1085-1095. (b) de Groot, D.; de Wael, B. F.
M.; Reek, J. N. H.; Schenning, A. P. H. J.; Kamer, P. C. J.; Meijer, E. W.;
van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2001, 123, 8453-8458. (c)
Kleij, A. W.; Gossage, R. A.; Klein Gebbink, R. J. M.; Brinkmann, N.;
Reijerse, E. J.; Kragl, U.; Lutz, M.; Spek, A. L.; van Koten, G. J. Am.
Chem. Soc. 2000, 122, 12112-12124. (d) Eggeling, E. B.; Hovestad, N.
J.; Jastrzebski, J. T. B. H.; Vogt, D.; van Koten, G. J. Org. Chem. 2000,
65, 8857-8865. (e) Hovestad, N.; Eggeling, E. B.; Heidbuchel, H. J.;
Jastrzebski, J. T. B. H.; Kragl, U.; Keim, W.; Vogt, D.; van Koten, G.
Angew. Chem., Int. Ed. 1999, 38, 1655-1658. (f) Brinkmann, N.; Giegel,
D.; Lohmer, G.; Reetz, M. T.; Kragl, U. J. Catal. 1999, 183, 163-168. (g)
Kragl, U.; Dreisbach, C. Angew. Chem., Int. Ed. Engl. 1996, 35, 642-
644.
(9) (a) Chen, Y.-C.; Wu, T.-F.; Jiang, L.; Deng, J.-G.; Liu, H.; Zhu, J.; Jiang,
Y.-Z. J. Org. Chem. 2005, 70, 1006-1010. (b) Ooe, M.; Murata, M.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 1604-
1605. (c) Plault, L.; Hauseler, A.; Nlate, S.; Astruc, D.; Ruiz, J.; Gatard,
S.; Neumann, R. Angew. Chem., Int. Ed. 2004, 43, 2924-2928. (d) Heuze,
K.; Mery, D.; Gauss, D.; Astruc, D. Chem. Commun. 2003, 2274-2275.
(e) Fan, Q.-H.; Chen, Y. M.; Chen, Y.-M.; Chen, X.-M.; Jiang, D.-Z.; Xi,
F.; Chan, A. S. C. Chem. Commun. 2000, 789-790. (f) Petrucci-Samija,
M.; Guillemette, V.; Dasgupta, M.; Kakkar, A. K. J. Am. Chem. Soc. 1999,
121, 1968-1969. (g) Hu, Q.-S.; Pugh, V.; Sabat, M.; Pu, L. J. Org. Chem.
1999, 64, 7528-7536. (h) Mizugaki, T.; Ooe, M.; Ebitani, K.; Kaneda, K.
J. Mol. Catal. A: Chem. 1999, 145, 329-333.
Results and Discussion
Synthesis of Dendritic Catalysts and Substrates. Palladium-
complexed dendrimers on silica were synthesized by the
modification of our previously reported method.12c,d Michael-
type addition and amidation reactions were used to construct
dendrimers supported on silica, followed by the phosphonation
of dendrimers with diphenylphosphinomethanol. The resulting
phosphonated dendrimers were then reacted with dichlorobis-
(benzonitrile)palladium(ΙΙ) to give the dendrimer complexes
G0-Pd-G3-Pd (Figure 1), which were characterized by solid-
state 31P NMR (complexed δ ) 11 ppm, uncomplexed δ )
-27 ppm). The ICP results showed the palladium contents of
G0-Pd-G3-Pd are 0.57, 0.80, 0.52, and 0.29 mmol/g,
respectively.
The requisite substrates are readily prepared by coupling and
subsequent reduction reactions. For example, treatment of
substituted 1-fluoro(chloro)-2-nitrobenzene 1 with 2-iodo(bro-
mo)phenol 2 in the presence of potassium carbonate gave the
corresponding nitro haloarenes, which were converted to 2-(2-
halophenoxy)anilines 3 using tin(ΙΙ) chloride dihydrate as the
reducing reagent. The yields were 72-85% for the two steps
(eq 1).13 Other intramolecular carbonylation reaction precursors
were also synthesized in a similar manner (see Supporting
Information).
(10) (a) Zubia, A.; Cossio, F. P.; Morao, I.; Rieumont, M.; Lopez, X. J. Am.
Chem. Soc. 2004, 126, 5243-5252. (b) Esposito, A.; Delort, E.; Lagnoux,
D.; Djojo, F.; Reymond, J.-L. Angew. Chem., Int. Ed. 2003, 42, 1381-
1383. (c) Schlenk, C.; Kleij, A. W.; Frey, H.; van Koten, G. Angew. Chem.,
Int. Ed. 2000, 39, 3445-3447. (d) Chechik, V.; Crooks, R. M. J. Am. Chem.
Soc. 2000, 122, 1243-1244. (e) Zeng, H.; Newkome, G. R.; Hill, C. L.
Angew. Chem., Int. Ed. 2000, 39, 1772-1774. (f) Kleij, A. W.; Gossage,
R. A.; Jastrzebski, J. T. B. H.; Boersma, J.; van Koten, G. Angew. Chem.,
Int. Ed. 2000, 39, 176-178. (g) Maraval, V.; Laurent, R.; Caminade, A.-
M.; Majoral, J.-P. Organometallics 2000, 19, 4025-4029. (h) Reetz, M.
T.; Lohmer, G.; Schwickard, R. Angew. Chem., Int. Ed. Engl. 1997, 36,
1526-1529.
(11) (a) Dahan, A.; Portnoy, M. Chem. Commun. 2002, 2700-2701. (b) Sellner,
H.; Seebach, D. Angew. Chem., Int. Ed. 1999, 38, 1918-1920. (c) Chung,
Y.-M.; Rhee, H.-K. Chem. Commun. 2002, 238-239. (d) Dahan, A.;
Portnoy, M. Org. Lett. 2003, 5, 1197-1200. (e) Sellner, H.; Rheiner, P.
B.; Seebach, D. HelV. Chim. Acta 2002, 85, 352-387. (f) Sellner, H.;
Karjalainen, J. K.; Seebach, D. Chem.sEur. J. 2001, 7, 2873-2887. (g)
Reetz, M. T.; Giebel, D. Angew. Chem., Int. Ed. 2000, 39, 2498-2501.
(h) Arya, P.; Rao, N. V.; Singkhonrat, J.; Alper, H.; Bourque, S. C.; Manzer,
L. E. J. Org. Chem. 2000, 65, 1881-1886. (i) Antebi, S.; Arya, P.; Manzer,
L. E.; Alper, H. J. Org. Chem. 2002, 67, 6623-6631. (j) Reynhardt, J. P.
K.; Alper, H. J. Org. Chem. 2003, 68, 8353-8360. (k) Lu, S.-M.; Alper,
H. J. Org. Chem. 2004, 69, 3558-3561. (l) Reynhardt, J. P. K.; Yang, Y.;
Sayari, A.; Alper, H. Chem. Mater. 2004, 16, 4095-4102.
Optimization of Intramolecular Carbonylation Reaction
Conditions. We selected 2-(2-iodophenoxy)aniline (3, R1 ) R2
) H, X ) I) as the model substrate and G1-Pd as the catalyst
for the intramolecular carbonylation reaction in order to
determine the optimized conditions. The influence of reaction
temperature, solvent, and base was investigated, and the results
are summarized in Table 1. The reaction temperature is
(12) (a) Lu, S.-M.; Alper, H. J. Am. Chem. Soc. 2003, 125, 13126-13131. (b)
Arya, P.; Panda, G.; Rao, N. V.; Alper, H.; Bourque, S. C.; Manzer, L. E.
J. Am. Soc. Chem. 2001, 123, 2889-2890. (c) Bourque, S. C.; Alper, H.;
Manzer, L. E.; Arya, P. J. Am. Chem. Soc. 2000, 122, 956-957. (d)
Bourque, S. C.; Maltais, F.; Xiao, W.-J.; Tardif, O.; Alper, H.; Arya, P.;
Manzer, L. E. J. Am. Chem. Soc. 1999, 121, 3035-3038.
(13) See Supporting Information for the preparation details.
9
J. AM. CHEM. SOC. VOL. 127, NO. 42, 2005 14777