10.1002/anie.201800121
Angewandte Chemie International Edition
COMMUNICATION
C. Baccin, F. Pinna, G. Strukul, Organometallics 1994, 13, 3442-3451;
f) N. Yang, Z. Su, X. Feng, C. Hu, Chem. Eur. J. 2015, 21, 7264-7277.
g) L. Zhou, X. Liu, J. Ji, Y. Zhang, W. Wu, Y. Liu, L. Lin, X. Feng, Org.
Lett. 2014, 16, 3938-3941.
>99% ee) bearing an α- all-carbon quaternary stereocenter.
Pleasingly, SmI2-mediated radical cyclization of 2b gave enantiopure
cyclobutanol 7a with complete diastereocontrol in 84% yield.[24]
Cyclobutanols 7b and 7c could be similarly be obtained from
resolved ketones bearing α- all-carbon quaternary stereocenters, 1f
and 3f. Thus, biocatalytic kinetic resolution of racemic ketones 1 and
3, when used in combination with metal-mediated radical
cyclizations, allows divergent access to important carbocyclic
products with very different molecular architectures in enantiopure
[3]
a) P. P. Poudel, K. Arimitsu, K. Yamamoto, Chem. Commun. 2016, 52,
4163-4166; b) D. K. Romney, S. M. Colvin, S. J. Miller, J. Am. Chem.
Soc. 2014, 136, 14019-14022; c) M. W. Giuliano, C.-Y. Lin, D. K.
Romney, S. J. Miller, E. V. Anslyn, Adv. Synth. Catal. 2015, 357, 2301-
2309; d) S. Xu, Z. Wang, X. Zhang, X. Zhang, K. Ding, Angew. Chem.
Int. Ed. 2008, 47, 2840-2843.
[4]
[5]
[6]
B. Mao, M. Fañanás-Mastral, B. L. Feringa, Chem. Rev. 2017, 117,
10502-10566.
form.
OH
O
1. SmI2–H2O
THF, rt
D. Sheng, D. P. Ballou, V. Massey, Biochemistry 2001, 40, 11156-
11167.
Ph
O
Ph
O
Ph
a) H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165-
4222; b) G. de Gonzalo, M. D. Mihovilovic, M. W. Fraaije,
ChemBioChem 2010, 11, 2208-2231; c) V. Alphand, G. Carrea, R.
Wohlgemuth, R. Furstoss, J. M. Woodley, Trends Biotechnol. 2003, 21,
318-323; d) M. Bučko, P. Gemeiner, A. Schenkmayerová, T. Krajčovič,
F. Rudroff, M. D. Mihovilovic, Appl. Microbiol. Biotechnol. 2016, 100,
6585-6599; e) G. de Gonzalo, W. J. H. van Berkel, M. W. Fraaije (Ed.
K. Faber, W-D. Fessner, N. J. Turner) in Science of Synthesis:
Biocatalysis in Organic Synthesis, Thieme, New York, 2015, 187-234.
a) Y. Minko, M. Pasco, L. Lercher, M. Botoshansky, I. Marek, Nature
2012, 490, 522-526; b) J. P. Das, I. Marek, Chem. Commun. 2011, 47,
4593-4623; c) J. P. Das, H. Chechik, I. Marek, Nat. Chem. 2009, 1,
128; d) S. F. Martin, Tetrahedron 1980, 36, 419-460; e) K. Fuji, Chem.
Rev. 1993, 93, 2037-2066; f) D. C. Behenna, B. M. Stoltz, J. Am.
Chem. Soc. 2004, 126, 15044-15045; g) M. Seto, J. L. Roizen, B. M.
Stoltz, Angew. Chem. Int. Ed. 2008, 47, 6873-6876.
CHMO
NADPH
2. DMP
CH2Cl2, rt
O
Me
2b 43%, >99% ee
Me
Me
Glucose/GDH
6a 73%, >99% ee
72:18 dr
Tris/HCl Buffer
pH 7.0
O
OH
rac-1b
Me
25 °C
SmI2, HMPA
Ph
Ph
250 rpm, 24 h
THF
–78 °C to rt
Me
1b 39%, >99% ee
7a 84%, >99% ee
>95:5 dr
Cl
[7]
OH
OH
7b 73%
87:13 e.r.
7c 66%
85:15 e.r.
Me
Me
Scheme 2. Biocatalytic kinetic resolution of rac-1b in a divergent, metal-
mediated radical cyclization approach to structurally distinct, enantiopure
molecular architectures.
[8]
[9]
a) A. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, 2013, 2745-2759;
b) Y. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 48,
740-751.
In summary, racemic cyclic ketones bearing α-quaternary
G. Ottolina, G. de Gonzalo, G. Carrea, B. Danieli, Adv. Synth. Catal.
2005, 347, 1035-1040.
stereocenters
undergo
efficient
kinetic
resolution
using
cyclohexanone monooxygenase (CHMO) from Acinetobacter
calcoaceticus. The new biocatalytic process has been used in
combination with new radical cyclizations to access important
enantioenriched carbocyclic scaffolds. In particular, lactones
possessing tetrasubstituted stereocenters are obtained with high
enantioselectivity (up to >99% ee) and are exploited in SmI2-
mediated cyclization processes to access complex, enantiomerically
[10] a) M. Hönig, P. Sondermann, N. J. Turner, E. M. Carreira, Angew.
Chem. Int. Ed. 2017, 56, 8942-8973; b) M. T. Reetz, J. Am. Chem. Soc.
2013, 135, 12480-12496; c) R. O. M. A. de Souza, L. S. M. Miranda, U.
T. Bornscheuer, Chem. Eur. J. 2017, 23, 12040-12063.
[11] For example, Stoltz’s enantioselective approach to cyclic ketones I
does not embrace substrates in which R3 ≠ H. Furthermore, even if I
were available in enantioenriched form using such an approach,
chemical Baeyer-Villiger oxidation is unselective (see ref. 16). a) D.
Behenna, J. T. Mohr, N. H. Sherden, S. C. Marinescu, A. M. Harned, K.
Tani, M. Seto, S. Ma. Z. Novák, M. R. Krout, R. M. McFadden, J. L.
Roizen, J. A. Enquist Jr, D. E. White, S. R. Levine, K. V. Petrova, A.
Iwashita, S. C. Virgil, B. M. Stoltz, Chem. Eur. J. 2011, 17, 14199-
14223; b) U. Kazmaier, D. Stolz, K. Krämer, F. L. Zumpe, Chem. Eur. J.
2008, 14, 1322-1329.
enriched cycloheptan- and cycloctan-1,4-diols. In
a divergent
approach to structurally distinct molecular architectures,
enantioenriched cyclic ketones from the resolution, bearing an α- all-
carbon quaternary stereocenter, were used in a SmI2-mediated
cyclization process to give cyclobutanol products (up to >99% ee).
[12] a) P. Girard, J. L. Namy, H. B. Kagan, J. Am. Chem. Soc. 1980, 102,
2693-2698; b) J. L. G. Namy, P. Kagan, H.B, Nouv. J. Chim. 1977, 1, 5-
7; c) X. Just-Baringo, D. J. Procter, Acc. Chem. Res. 2015, 48, 1263-
1275; d) L. A. Duffy, H. Matsubara, D. J. Procter, J. Am. Chem. Soc.
2008, 130, 1136-1137; e) D. Parmar, L. A. Duffy, D. V. Sadasivam, H.
Matsubara, P. A. Bradley, R. A. Flowers, D. J. Procter, J. Am. Chem.
Soc. 2009, 131, 15467-15473; f) D. Parmar, H. Matsubara, K. Price, M.
Spain, D. J. Procter, J. Am. Chem. Soc. 2012, 134, 12751-12757; g) D.
Parmar, K. Price, M. Spain, H. Matsubara, P. A. Bradley, D. J. Procter,
J. Am. Chem. Soc. 2011, 133, 2418-2420; h) M. Szostak, K. D. Collins,
N. J. Fazakerley, M. Spain, D. J. Procter, Org. Biomol. Chem. 2012, 10,
5820-5824; i) X. Just-Baringo, C. Morrill, D. J. Procter, Tetrahedron
2016, 72, 7691-7698; j) X. Just-Baringo, J. Clark, M. J. Gutmann, D. J.
Procter, Angew. Chem. Int. Ed. 2016, 55, 12499-12502.
Acknowledgements
We thank the EPSRC (EPSRC Established Career Fellowship to
D.J.P.), the BBSRC DTP (Studentship to C.M.), and the ERC (ERC
Advanced Grant to N. J. T.).
Keywords: biocatalysis • lactones • samarium • radical • cyclization
[1]
[2]
A. Baeyer, V. Villiger, Ber. Dtsch. Chem. Ges. 1899, 32, 3625-3633.
a) C. Bolm, G. Schlingloff, K. Weickhardt, Angew. Chem. Int. Ed. 1994,
33, 1848-1849; b) L. Zhou, X. Liu, J. Ji, Y. Zhang, X. Hu, L. Lin, X.
Feng, J. Am. Chem. Soc. 2012, 134, 17023-17026; c) A. Cavarzan, G.
Bianchini, P. Sgarbossa, L. Lefort, S. Gladiali, A. Scarso, G. Strukul,
Chem. Eur. J. 2009, 15, 7930-7939; d) C. Paneghetti, R. Gavagnin, F.
Pinna, G. Strukul, Organometallics 1999, 18, 5057-5065; e) A. Gusso,
[13] For selected total syntheses of biologically important natural products,
see: a) R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P.
D. Boatman, M. Shindo, C. C. Smith, S. Kim, J. Am. Chem. Soc. 1994,
This article is protected by copyright. All rights reserved.