Recently, the Rh(III) catalyst for CꢀH functionaliza-
tion has attracted more attention due to its high catalytic
activity and excellent functional group tolerance.10,11 In
the context of CꢀH amination, the Rh catalyst proved to
be very efficient for the transformation of allylic, benzylic,
and certain unactivated sp3 CꢀH bonds.8b,12 These elegant
studies led us to consider whether a Rh catalyst is applic-
able to the direct amination of aromatic CꢀH bonds with
amines or amides. Herein, we describe a mild, efficient
Rh(III)-catalyzed method for N-chelator-directed ortho
sp2 CꢀH bond amidation with sulfonamides.
Table 1. Optimization of the Rh-Catalyzed Amidationa
oxidant
(equiv)
temp
yield
(%)b
entry
solvent
DMSO
(°C)
1
Ag2CO3 (2.0)
Ag2CO3 (2.0)
Ag2CO3 (2.0)
Ag2CO3 (2.0)
Ag2CO3 (2.0)
AgOAc (4.0)
100
100
100
100
100
100
100
100
100
100
80
0
Recent advances in the Rh(III)-catalyzed CꢀH bond
activation10,11 have afforded valuable starting points for
our exploration in the direct amidation of arenes with
sulfonamides. Weselectedthe reactionof2-phenylpyridine
(1a) and p-toluenesulfonamide (2a) as the model reaction.
The [Cp*Rh(III)](SbF6)2, which can be generated in situ
from [Cp*RhCl2]2 in the presence of AgSbF6, was selected
as the catalyst. Initially, the model reaction that was
performed at 100 °C using Ag2CO3 as the oxidant in the
presence of 5 mol % of Rh(III) only generated a small
amount of the desired product 3a, in CH2Cl2 (Table 1,
entry 4). No desired product was obtained when the
2
DMF
0
3
1,4-dioxane
CH2Cl2
toluene
toluene
toluene
toluene
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
0
4
5
5
20
5
6
7
Cu(OAc)2 (2.0)
PhI(OAc)2 (2.0)
PhI(OAc)2 (2.0)
PhI(OAc)2 (1.5)
PhI(OAc)2 (1.5)
PhI(OAc)2 (1.5)
PhI(OAc)2 (1.5)
PhI(TFA)2 (1.5)
PhI(OCOt‑Bu)2
(1.5)
5
8
20
60
74
74
76
71
0
9
10
11
12
13
14
15
60
40
60
60
58
(9) For the transition-metal catalyzed the amination/amidation of
(hetero)arenes with amines/amides, see: (a) Thu, H.-Y.; Yu, W.-Y.; Che,
C.-M. J. Am. Chem. Soc. 2006, 128, 9048. (b) Xiao, B.; Gong, T.-J.; Xu,
J.; Liu, Z.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466. (c) Shrestha, R.;
Mukherjee, P.; Tan, Y.; Litman, Z. C.; Hartwig, J. F. J. Am. Chem. Soc.
2013, 135, 8480. (d) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q.
J. Am. Chem. Soc. 2006, 128, 6790. (e) Monguchi, D.; Fujiwara, T.;
Furukawa, H.; Mori, A. Org. Lett. 2009, 11, 1607. (f) Wang, Q.;
Schreiber, S. L. Org. Lett. 2009, 11, 5178. (g) Zhao, H.; Wang, M.; Su,
W.; Hong, M. Adv. Synth. Catal. 2010, 352, 1301. (h) Miyasaka, M.;
Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura, M. Org. Lett.
2011, 13, 359. (i) John, A.; Nicholas, K. M. J. Org. Chem. 2011, 76, 4158.
(j) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed. 2013, 52,
6043. (k) Xie, Y.; Qian, B.; Xie, P.; Huang, H. Adv. Synth. Catal. 2013,
355, 1315. (l) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem.,
Int. Ed. 2009, 48, 9127. (m) Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S.
Angew. Chem., Int. Ed. 2010, 49, 9899.
16
PhI(OAc)2 (1.5)
PhI(OAc)2 (1.5)
PhI(OAc)2 (1.5)
PhI(OAc)2 (1.5)
PhI(OAc)2 (1.5)
ClCH2CH2Cl
CH2Cl2
60
60
60
60
60
59
54
69
0
17c
18d
19e
20f
CH2Cl2
CH2Cl2
CH2Cl2
62
a Reaction conditions: 1a (0.4 mmol), 2a (0.2 mmol), [Cp*RhCl2]2
(2.5 mol %), AgSbF6 (10 mol %), oxidant, solvent (2 mL), 24 h.
b Isolated yield. c In absence of AgSbF6. d 1a (0.2 mmol), 2a (0.4 mmol).
e In absence of [Cp*RhCl2]2. f 1a (0.2 mmol), 2a (0.2 mmol); 3a was the
only product, and a diamidated product was not observed.
reaction was carried out in other solvents, such as DMSO,
DMF, and 1,4-dioxane (entries 1ꢀ3). When toluene was
used as the solvent, the yield of the transformation reached
20% (entry 5). We further tested other oxidants including
inorganic and organic compounds (entries 6ꢀ8) and found
that the effect of soluble PhI(OAc)2 was similar to that of
Ag2CO3 (entry 8). Satisfactorily, the change of solvent to
CH2Cl2 led to 3a in 60% yield (entry 9). Further investiga-
tions revealed that the reaction could occur under a milder
temperature (60 °C) with the improved yield (entries
10ꢀ13). Other hypervalent iodide (III) reagents with differ-
ent anions were inferior to PhI(OAc)2 (entries 14 and 15),
which presumably resulted from the effects of the different
anions generated from iodide reagents on CꢀH bond
activation.13 A control experiment showed that the Rh
catalyst was necessary for the reaction to occur (entry 19).
Using the optimized condition (Table 1, entry 12), we
first evaluated the substrate scope of arenes. As shown in
Scheme 1, the 2-arylpyridines containing electron-donating
groups such as a methyl or methoxy substituent in the
(10) For selected reviews on Rh(III)-catalyzed CꢀH activations, see:
(a) Satoh, T.; Miura, M. Chem.;Eur. J 2010, 16, 11212. (b) Colby,
D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012,
45, 814. (c) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica
Acta 2012, 45, 31. (d) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012,
41, 3651.
(11) For selected examples of Rh(III)-catalyzed CꢀH activations,
see: (a) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 6908. (b) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F.
J. Am. Chem. Soc. 2011, 133, 2350. (c) Tsai, A. S.; Tauchert, M. E.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011, 133, 1248. (d) Li,
Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi,
Z.-J. Angew. Chem., Int. Ed. 2011, 50, 2115. (e) Wencel-Delord, J.;
Nimphius, C.; Patureau, F. W.; Glorius, F. Angew. Chem., Int. Ed. 2012,
€
51, 2247. (f) Schroder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem.
Soc. 2012, 134, 8298. (g) Wang, H.; Grohmann, C.; Nimphius, C.;
Glorius, F. J. Am. Chem. Soc. 2012, 134, 19592. (h) Morimoto, K.; Itoh,
M.; Hirano, K.; Satoh, T.; Shibata, Y.; Tanaka, K.; Miura, M. Angew.
€
Chem., Int. Ed. 2012, 51, 5359. (i) Hyster, T. K.; Knorr, L.; Ward, T. R.;
Rovis, T. Science 2012, 338, 500. (j) Ye, B.; Cramer, N. Science2012, 338,
504. (k) Chan, W.-W.; Lo, S.-F.; Zhou, Z.; Yu, W.-Y. J. Am. Chem. Soc.
2012, 134, 13565. (l) Zhen, W.; Wang, F.; Zhao, M.; Du, Z.; Li, X.
Angew. Chem., Int. Ed. 2012, 51, 11819. (m) Li, B.-J.; Wang, H.-Y.; Zhu,
Q.-L.; Shi, Z.-J. Angew. Chem., Int. Ed. 2012, 51, 3948. (n) Dong, J.;
Long, Z.; Song, F.; Wu, N.; Guo, Q.; Lan, J.; You, J. Angew. Chem., Int.
Ed. 2013, 52, 580. (o) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135,
€
66. (p) Wang, H.; Schroder, N.; Glorius, F. Angew. Chem., Int. Ed. 2013,
52, 5386. (q) Zhang, G.; Yang, L.; Wang, Y.; Xie, Y.; Huang, H. J. Am.
Chem. Soc. 2013, 135, 8850.
(12) (a) Zalatan, D. N.; Bios, J. D. In Topics in Current Chemistry; Yu,
J.-Q., Shi, Z.-J., Eds.; Springer: Berlin, 2010; Vol. 292, pp 364ꢀ370. (b)
Bois, J. D. Org. Process Res. Dev. 2011, 15, 758.
(13) (a) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am.
Chem. Soc. 2005, 127, 13754. (b) Lafrance, M.; Fagnou, K. J. Am. Chem.
Soc. 2006, 128, 16496. (c) Li, L.; Brennessel, W. W.; Jones, W. D.
Organometallics 2009, 28, 3492.
B
Org. Lett., Vol. XX, No. XX, XXXX