196
R. Mariaca et al. / Journal of Fluorine Chemistry 130 (2009) 175–196
[3] R. Mariaca, N. Behrnd, P. Eggli, H. Stoeckli-Evans, J. Hulliger, Cryst. Eng. Commun. 8
An interesting comparison appearing in the literature [29] is the
(2006) 222–232.
structure of 40-bromo-20,30,50,60-tetrafluorostilbazole, consisting of
an infinite unimolecular network involving both interchain
stacking and Nꢀ ꢀ ꢀBr halogen bonding. Furthermore, the structure of
halogenated tolans of general formula p-C6H4–CBB C–C6F5 and p-
C6F4–CBB C–C6H5 (X = F, Cl, Br, I) are characterized by arene-
perfluoroarene, halogen–halogen interactions and herringbone
packing [11].
[4] C.B. Aakero¨y, J. Desper, B.A. Helfrich, P. Metrangolo, T. Pilati, G. Resnati, A.
Stevenazzi, Chem. Commun. (2007) 4236–4238.
[5] (a) T. Imakuwo, H. Sawa, R. Kato, Synth. Met. 73 (1995) 117–122;
p–p
´
(b) M. Formigue, P. Batail, Chem. Rev. 104 (2004) 5379–5418;
(c) N. Tajima, M. Tamura, R. Kato, Y. Nishio, K. Kajita, Synth. Met. 181 (2003) 133–
134.
[6] (a) A.S. Batsanov, A.J. Moore, N. Robertson, A. Green, M.R. Bryce, J.A.K. Howard,
A.E. Underhill, J. Mater. Chem. 7 (1997) 387–389;
´
(b) M. Fourmigue, Struct. Bond. 126 (2008) 181–207.
The co-crystal [18ꢀ27] is formed with two species, which are
connected through CNꢀ ꢀ ꢀI chains having different distances
[7] H.L. Nuyen, P.N. Horton, M.B. Hursthouse, A.C. Legon, D.W. Bruce, J. Am. Chem.
Soc. 126 (2004) 16–17.
[8] A. Farina, S.V. Meille, M.T. Messina, P. Metrangolo, G. Resnati, G. Vecchio, Angew.
Chem. Int. Ed. 38 (1999) 2433–2436.
[9] (a) P. Metrangolo, G. Resnati, Chem. Eur. J. 7 (2001) 2511–2520;
(b) P. Metrangolo, F. Meyer, T. Pilati, D.M. Proserpio, G. Resnati, Chem. Eur. J. 13
(2007) 5765–5772;
˚
˚
3.14 A and 3.21 A. The lower melting point (188 8C) of [18ꢀ27]
indicates a different structure compared to the pure compounds
18 (195 8C) and 27 (211 8C). In the case of the co-crystal [17ꢀ26],
interactions CNꢀ ꢀ ꢀF (forming
a 10-member ring) can be
(c) P. Metrangolo, G. Resnati, T. Pilati, R. Liantonio, F. Meyer, J. Polym. Sci. A:
Polym. Chem. 45 (2007), Highlight 1–15;
(d) P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 38 (2005)
386–395.
compared with those of CNꢀ ꢀ ꢀH (forming a 9-member ring) of
the pure compound 17, because the melting points are very near
(175 and 181 8C). In contrast to the interactions of the pure
compound 16 (Fꢀ ꢀ ꢀF interactions) and 25 (CNꢀ ꢀ ꢀH forming a 10
member ring), the co-crystal [16ꢀ25] shows strong Nꢀ ꢀ ꢀF
interactions (9 member ring), lower as the sum of van der
[10] S.G. Bratsch, J. Chem. Educ. 62 (1985) 101–103.
[11] J.C. Colling, J.M. Burke, P.S. Smith, A.S. Batsanov, J.A.K. Howard, T.B. Marder, Org.
Biomol. Chem. 2 (2004) 3172–3178.
[12] A. Papagni, S. Maiorana, P. Del Buttero, D. Perdicchia, F. Cariati, E. Cariati, W.
Marcolli, Eur. J. Org. Chem. 8 (2002) 1380–1384.
[13] (a) L. Horner, H. Hoffmann, H.G. Wippel, Chem. Ber. 91 (1958) 61–63;
(b) L. Horner, H. Hoffmann, H.G. Wippel, G. Klahre, Chem. Ber. 92 (1959) 2499–
2505.
[14] W.S. Wadsworth, W.D. Emmons, J. Am. Chem. Soc. 83 (1961) 1733–1738.
[15] L. Horner, H. Hoffmann, W. Klink, Chem. Ber. 96 (1963) 3133–3136.
[16] R. Thomas, J. Boutagy, Chem. Rev. 74 (1974) 87–99.
[17] A.E. Arbuzov, A.F. Razumov, J. Russ. Phys. Chem. Soc. 61 (1929) 623–630.
[18] R.M. Acheson, G.C.M. Lee, J. Chem. Soc. Perkin Trans. I (1987) 2321–2332.
[19] (a) A. Ianni, S.R. Waldvogel, Synthesis (2006) 2103–2112;
(b) M.J. Robson, US Patent 5,132,469 (1992);
(b) M.J. Robson, J. Williams, UK patent GB 2,171,994A (1985).
[20] J. Leroy, B. Scho¨llhorn, J.-L. Syssa-Magale´, K. Boubekeur, P. Palvadeau, J. Fluorine
Chem. 125 (2004) 1379–1382.
˚
Waals radii (2.89 A).
The structure of [21ꢀ24] has been studied in details. It
contains two molecular species (9:1) aligned in 1D polar chains
CNꢀ ꢀ ꢀI, located on two symmetrically independent sites, one site
containing molecules of one species and the other site contains
two molecules (8:2), related by an inversion center. The polarity
of this structure was confirmed by a positive SHG effect and the
polar space group P1. This may be related to the polar properties
found also (i) 24 and (ii) in the solid solutions of [E-4-(4-
bromostyryl)-2,3,5,6-tetrafluorobenzonitrile)]xꢀ[E-4-(4-bromo-
2,3,5,6-tetrafluorostyryl)-benzonitrile]1ꢁx that we had reported
before [3].
[21] (a) J.M. Campagne, D. Prim. Les complexes de palladium en synthe`se organique,
Initiation et guide practique. CNRS editions, 2001;
(b) E. Negishi (Ed.), Handbook of Organopalladium Chemistry for Organic
Synthesis, vols. I and II, Wiley, New York, 2002;
(c) J.J. Li, G.W. Gribble, Palladium in Heterocyclic Chemistry. A Guide for Syn-
thetic Chemist, Elsevier, Oxford, 2000.
In this context one should mention previous partially published
work [30] on the polar structures of p-X–C6F4–CN (X = Cl, Br, I) in
which lateral fluorination was successful to promote the formation
of polar structures. Qualitative measurements of an extended
series confirmed that about. 90% of these structures were SHG
active. However, this study shows clearly, that 8-/9- or 4-fault
fluorination in stilbenes has effected only one polar structure (24)
out of 12. In view of some design principles we have put forward
recently [3], this is quite surprising.
´
[22] A.C. Albeniz, P. Espinet, B. Martin-Ruiz, D. Milstein, Organometallics 24 (2005)
3679–3684.
[23] (a) C. Roscher, PhD Thesis, University of Wu¨ rzburg, 1998;;
(b) C. Roscher, M. Popall, in: B.K. Coltrain, C. Sanchez, D.W. Schaefer, G.L. Wilkes
(Eds.), Mater. Res. Soc. Symp. Proc. (Better Ceramics Through Chemistry VII:
Organic/Inorganic Hybrid Materials) 435 (1996) 547–552.
[24] (a) A.L. Spek, PLUTON and ORTEP Platon for Windows Taskbar v 1.10, University
of Utrecht, The Netherlands, 2006;
(b) A.L. Spek, Acta Cryst. A46 (1990) C34.
[25] X-Area V1.17 & X-RED32 V1.04 Software, Stoe & Cie GmbH, Darmstadt, Germany,
2002.
Acknowledgments
[26] (a) G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Determination,
University of Go¨ttingen, Germany, 1997;
(b) G.M. Sheldrick, Acta Cryst. A46 (1990) 267–273.
[27] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Go¨ttingen, Germany, 1997.
We thank PD Dr. Stefan Schu¨rch for the mass spectrometry and
elemental analyses. We thank the Regionale Arbeitsvermittlung
Bern (Lukas Kaltenrieder) for technical assistance in syntheses.
[28] A.L. Spek, J. Appl. Cryst. 36 (2003) 7–13.
References
[29] A.C.B. Lucassen, M. Vartanian, G. Leitus, M.E. Van der Boom, Cryst. Growth Des. 5
(2005) 1671–1673.
[30] (a) A.D. Bond, J. Griffiths, J.M. Rawson, J. Hulliger, J. Chem. Soc. Chem. Commun.
(2001) 2488–2489;
[1] G.P. Bartholomew, X. Bu, G.C. Bazan, Chem. Mater. 12 (2000) 2311–2318.
[2] J.C. Collings, A.S. Batsanov, J.A.K. Howard, D.A. Dickie, J.A.C. Clyburne, H.A. Jenkins,
T.B. Marder, J. Fluorine Chem. 126 (2005) 515–519.
(b) A.D. Bond, J. Griffiths, J.M. Rawson, J. Hulliger, H. Su¨ ss, unpublished work.