Paper
Organic & Biomolecular Chemistry
2010, 352, 1381–1407; (c) L. M. Repka and S. E. Reisman, 30 A brief solvent and temperature screen was undertaken
J. Org. Chem., 2013, 78, 12314–12320.
(see ESI† for details). The use of THF as solvent at a reac-
tion temperature of −78 °C remained optimal for both
yield and enantioselectivity of the product oxindole.
31 The obtained silyl-nitrones were found to hydrolyze on
attempted purification by column chromatography, and
were not amenable to storage. Consequently, these nitrones
were prepared and used immediately as crude residues and
only limited characterization data was obtained. Their
instability, however, rendered them impractical as potential
nitrone chiral auxiliaries.
10 P. B. Alper, C. Meyers, D. R. Lerchner, D. R. Siegel and
E. M. Carreira, Angew. Chem., Int. Ed., 1999, 38, 3186–
3189.
11 S. Edmonson, S. J. Danishefsky, L. Sepp-Lorenzino and
N. Rosen, J. Am. Chem. Soc., 1999, 121, 2147–2155.
12 R. He, C. Ding and K. Maruoka, Angew. Chem., Int. Ed.,
2009, 48, 4559–4561.
13 (a) S. Lee and J. F. Hartwig, J. Org. Chem., 2001, 66, 3402–
3415; (b) J. E. M. N. Klein and R. J. K. Taylor, Eur. J. Org.
Chem., 2011, 6821–6841.
32 CCDC 1029035 contains the supplementary crystallo-
graphic data for 20.
14 A. B. Douney, K. Hatanaka, J. J. Kodanko, M. Oestreich,
L. E. Overman, L. A. Pfeifer and M. M. Weiss, J. Am. Chem. 33 M. J. Frisch, et al., Gaussian 09, revision A.2, Gaussian, Inc.,
Soc., 2003, 125, 6261–6271. Wallingford, CT, 2009. See ESI† for the full citation.
15 (a) L. E. Overman and M. D. Rosen, Angew. Chem., Int. Ed., 34 H. R. Seikaly and T. T. Tidwell, Tetrahedron, 1986, 42, 2587–
2000, 39, 4596–4599; (b) A. B. Douney and L. E. Overman,
Chem. Rev., 2003, 103, 2945–2964.
16 (a) P. E. Kündig and Y.-X. Jia, Angew. Chem., Int. Ed., 2009,
2613.
35 C. E. Cannizzaro, T. Strassner and K. N. Houk, J. Am. Chem.
Soc., 2001, 123, 2668–2669.
48, 1636–1639; (b) R. J. K. Taylor and A. Perry, Chem. 36 π-π interactions displayed in the X-ray structure of nitrone
Commun., 2009, 3249–3251.
20 suggest the importance of dispersion interactions in
determining the selectivity at the cycloaddition step.
Optimizations using dispersion corrected density func-
tional theory gave similar geometries and relative energies;
the results of calculations at the B3LYP-D3/6-311+G(d,p)//
B3LYP-D/6-31G(d) level are given in the ESI.†
17 (a) B. M. Trost and M. Osipov, Angew. Chem., Int. Ed., 2013,
52, 9176–9181; (b) B. M. Trost and M. K. Brennan, Org.
Lett., 2006, 8, 2027–2030.
18 I. D. Hills and G. C. Fu, Angew. Chem., Int. Ed., 2003, 42,
3921–3924.
19 G. S. Singh and Z. Y. Desta, Chem. Rev., 2012, 112, 6104– 37 For all reactions described herein, racemic oxindole
6155.
samples were obtained from reaction of the requisite
achiral diarylnitrone and alkylarylketene (see ESI† for
Experimental details). For the enantioenriched oxindoles,
the absolute configuration is assigned by analogy to that
determined by derivatization in our earlier publication (ref.
25).
20 (a) K. Zheng, C. Yin, X. Lin, L. Lin and X. Feng, Angew.
Chem., Int. Ed., 2011, 50, 2573–2577; (b) B. Tan,
G. Hernandez-Torres and C. F. Barbas III, J. Am. Chem. Soc.,
2011, 133, 12354–12357.
21 (a) G. Lakshmaiah, T. Kawabata, M. Shang and K. Fuji,
J. Org. Chem., 1999, 64, 1699–1704; (b) S. Ma, X. Han, 38 J. E. DeLorbe, D. Horne, R. Jove, S. M. Mennen, S. Nam,
S. Krishnan, S. C. Virgil and B. M. Stoltz, Angew. Chem., Int.
Ed., 2009, 48, 8037–8041.
F.-L. Zhang and L. E. Overman, J. Am. Chem. Soc., 2013,
135, 4117–4128.
22 H. Staudinger and G. Miescher, Helv. Chim. Acta, 1919, 2, 39 After fourteen days, an ee value of 30% was obtained when
554–582. the HPLC sample of oxindole 37 was reanalyzed.
23 C. H. Hassall and A. E. Lippman, J. Chem. Soc., 1953, 1059– 40 N. Çelebi-Ölçüm, B. W. Boal, A. D. Huters, N. K. Garg and
1063. K. N. Houk, J. Am. Chem. Soc., 2011, 133, 5752–5755.
24 M. Hafiz and G. A. Taylor, J. Chem. Soc., Perkin Trans. 1, 41 Stokes and Taylor have described the isolation of a very
1980, 1700–1705.
25 N. Duguet, A. M. Z. Slawin and A. D. Smith, Org. Lett.,
2009, 11, 3858–3861.
26 E. Richmond, N. Duguet, A. M. Z. Slawin, T. Lebl and
A. D. Smith, Org. Lett., 2012, 14, 2762–2765.
27 N. Çelebi-Ölçüm, Y.-h. Lam, E. Richmond, K. B. Ling,
similar lactone species using the same xylylnitrone starting
material: D. P. Stokes and G. A. Taylor, J. Chem. Soc. C,
1971, 2334–2336. The relative configuration within 55 was
confirmed by single crystal X-ray diffraction. CCDC
1029036 contains the supplementary crystallographic data
for 55.
A. D. Smith and K. N. Houk, Angew. Chem., Int. Ed., 2011, 42 The relative configuration within 59 was confirmed by
50, 11478–11482.
28 R. W. Hoffmann, Chem. Rev., 1989, 89, 1841–1860.
single crystal X-ray diffraction. CCDC 1029037 contains the
supplementary crystallographic data for 59.
29 In our previous studies (ref. 26), the corresponding alde- 43 The generation of oxazolidinones in reactions of symmetric
hyde has been isolated from a crude reaction mixture and
retreated with PhNHOH to regenerate TIPBS nitrone 20.
The nitrone has then been shown to be an effective
chiral auxiliary in a second cycle of asymmetric oxindole
synthesis.
ketenes and nitrones has been previously observed and
investigated; for selected examples see: R. N. Pratt,
D. P. Stokes and G. A. Taylor, J. Chem. Soc., Perkin Trans. 1,
1975, 498–503; M. A. Abou-Gharbia and M. M. Jouillie,
J. Org. Chem., 1979, 44, 2961–2966. Through an 17O label-
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2014