Nature Chemistry
Articles
30. Gagnon, A, Benoit, E. & Le Roch, A. Sci. Synth., Knowl. Updates 4,
56. Kinzel, T., Zhang, Y. & Buchwald, S. L. A new palladium precatalyst allows
for the fast Suzuki−Miyaura coupling reactions of unstable polyfuorophenyl
and 2-heteroaryl boronic acids. J. Am. Chem. Soc. 132, 14073–14075 (2010).
57. Chen, L., Sanchez, D. R., Zhang, B. & Carrow, B. P. “Cationic” Suzuki–
Miyaura coupling with acutely base-sensitive boronic acids. J. Am. Chem. Soc.
139, 12418–12421 (2017).
2–112 (2018).
31. Suzuki, H. et al. Organobismuth Chemistry 1st edn (Elsevier, 2001).
32. Balsane, K. E., Gund, S. H. & Nagarkar, J. M. Atom economic palladium
catalyzed novel approach for arylation of benzothiazole and benzoxazole with
triarylbismuth reagents via C-H activation. Catal. Commun. 89, 29–33 (2017).
33. Fedorov, A. Y. & Finet, J.-P. Synthesis and reactivity of pentavalent
biphenyl-2,2′-ylenebismuth derivatives. J. Chem. Soc., Perkin Trans. 1,
3775–3778 (2000).
58. Babudri, F., Farinola, G. M., Naso, F. & Ragni, R. Fluorinated organic
materials for electronic and optoelectronic applications: the role of the
fuorine atom. Chem. Commun. 1003–1022 (2007).
34. Suzuki, H., Murafuji, T. & Azuma, N. Synthesis and reactions of some new
heterocyclic bismuth-(iii) and -(v) compounds. 5,10-Dihydrodibenzo[b,e]
bismine and related systems. J. Chem. Soc. Perkin Trans. 1, 1593–1600 (1992).
35. Sakurai, N. & Mukaiyama, T. A new preparative method of aryl sulfonate
esters by using cyclic organobismuth reagents. Heterocycles 74,
771–790 (2007).
36. Murafuji, T. et al. Bismuth heterocycles based on a diphenyl sulfone scafold:
synthesis and substituent efect on the antifungal activity against
Saccharomyces cerevisiae. Eur. J. Med. Chem. 46, 519–525 (2011).
37. Murafuji, T., Nagasue, M., Tashiro, Y., Sugihara, Y. & Azuma, N. Structural
characteristics of aryloxybismuthanes stabilized by hypervalent bond
formation. Synthesis, incorporation of 4-methoxyphenol through
hydrogen bonding, and crystal supramolecularity. Organometallics 19,
1003–1007 (2000).
59. Fedorov, A., Combes, S. & Finet, J.-P. Infuence of the steric hindrance of the
aryl group of pentavalent triarylbismuth derivatives in ligand coupling
reactions. Tetrahedron 55, 1341–1352 (1999).
60. Barton, D. H. R. et al. Te chemistry of pentavalent organobismuth reagents:
Part X. Studies on the phenylation and oxidation of phenols. Tetrahedron 43,
323–332 (1987).
61. Evano, G., Blanchard, N. & Toumi, M. Copper-mediated coupling reactions
and their applications in natural products and designed biomolecules
synthesis. Chem. Rev. 108, 3054–3131 (2008).
62. Qiao, J. X. & Lam, P. Y. S. Copper-promoted carbon-heteroatom
bond cross-coupling with boronic acids and derivatives. Synthesis 6,
829–856 (2011).
63. Crifar, C., Petiot, P., Ahmad, T. & Gagnon, A. Synthesis of highly
functionalized diaryl ethers by copper‐mediated O‐arylation of phenols using
trivalent arylbismuth reagents. Chem. Eur. J. 20, 2755–2760 (2014).
64. Barton, D. H. R. et al. Pentavalent organobismuth reagents. Part 2. Te
phenylation of phenols. J. Chem. Soc. Perkin Trans. 1, 2657–2665 (1985).
65. Hansch, C., Leo, A. & Taf, R. W. A survey of Hammett substituent constants
and resonance and feld parameters. Chem. Rev. 97, 165–195 (1991).
66. Takahata, Y. & Chong, D. P. Estimation of Hammett sigma constants of
substituted benzenes through accurate density-functional calculation of
core-electron binding energy shifs. Int. J. Quantum Chem. 103,
509–515 (2005).
38. Ohkata, K., Takemoto, S., Ohnishi, M. & Akiba, K. Synthesis and chemical
behaviors of 12-substituted dibenz[c,f][1,5]azastibocine and dibenz[c,f][1,5]
azabismocine derivatives: evidences of 10-Pn-4 type hypervalent interaction.
Tetrahedron Lett. 30, 4841–4844 (1989).
39. Ikegami, T. & Suzuki, H. A stabilized triarylbismuthane imide: synthesis and
frst X-ray structure analysis. Organometallics 17, 1013–1017 (1998).
40. Matano, Y., Begum, S. A., Miyamatsu, T. & Suzuki, H. A new and efcient
method for the preparation of bismuthonium and telluronium salts using
aryl- and alkenylboronic acids. First observation of the chirality at bismuth in
an asymmetrical bismuthonium salt. Organometallics 17, 4332–4334 (1998).
41. Yoshihiro, M., Takashi, M. & Hitomi, S. Synthesis and reaction of
unsymmetrical tetraarylbismuthonium salts. First isolation of bismuthonium
salts bearing all diferent aryl groups. Chem. Lett. 27, 127–128 (1998).
42. Matano, Y., Begum, S. A., Miyamatsu, T. & Suzuki, H. Synthesis and
stereochemical behavior of unsymmetrical tetraarylbismuthonium salts.
Organometallics 18, 5668–5681 (1999).
43. Matano, Y., Begum, S. A. & Suzuki, H. A new synthesis of triarylbismuthanes
via directed ligand coupling of oxazoline-substituted tetraarylbismuthonium
salts: synthesis of polystyrenes bearing the diarylbismuthino group. Synthesis
1081–1085 (2001).
44. Matano, Y. & Imahori, H. A new, efcient method for direct α-alkenylation of
β-dicarbonyl compounds and phenols using alkenyltriarylbismuthonium salts.
J. Org. Chem. 69, 5505–5508 (2004).
45. Stavila, V., Turston, J. H., Prieto-Centurión, D. & Whitmire, K. H. A new
methodology for synthesis of aryl bismuth compounds: arylation of
bismuth(iii) carboxylates by sodium tetraarylborate salts. Organometallics 26,
6864–6866 (2007).
46. Dostál, L. et al. From stiba- and bismaheteroboroxines to N,C,N-chelated
diorganoantimony(iii) and bismuth(iii) cations—an unexpected case of aryl
group migration. Inorg. Chem. 54, 6010–6019 (2015).
47. Cox, P. A., Leach, A. G., Campbell, A. D. & Lloyd-Jones, G. C.
Protodeboronation of heteroaromatic, vinyl, and cyclopropyl boronic acids:
pH–rate profles, autocatalysis, and disproportionation. J. Am. Chem. Soc.
138, 9145–9157 (2016).
48. Cox, P. A. et al. Base-catalyzed aryl-B(OH)2 protodeboronation revisited:
from concerted proton transfer to liberation of a transient aryl anion. J. Am.
Chem. Soc. 139, 13156–13165 (2017).
49. Kozminskaya, T. K., Nadj, M. M. & Kocheshkov, K. A. Te synthesis of
organo-bismuth compounds of the type R3Bi by the method of double
diazonium salts. Zh. Obshch. Khim. 16, 891–896 (1946).
50. Matano, Y. et al. Water-soluble non-ionic triarylbismuthanes. First synthesis
and properties. J. Chem. Soc., Perkin Trans. 1, 2511–2518 (1998).
51. Hébert, M. et al. Synthesis of highly functionalized triarylbismuthines by
functional group manipulation and use in palladium- and copper-catalyzed
arylation reactions. J. Org. Chem. 81, 5401–5416 (2016).
52. Preda, A. M. et al. Heteroaryl bismuthines: a novel synthetic concept and
metal⋯π heteroarene interactions. Dalton Trans. 46, 8269–8278 (2017).
53. Petiot, P. & Gagnon, A. Palladium‐catalyzed cross‐coupling reaction of
functionalized aryl‐ and heteroarylbismuthanes with 2‐halo(or 2‐trifyl)azines
and ‐diazines. Eur. J. Org. Chem. 24, 5282–5289 (2013).
54. Merck and Co. O-Heteroaryl, O-alkylheteroaryl, O-alkenylheteroaryl and
O-alkynylheteroarylmacrolides having immunosuppressive activity. US patent
US5252732 (1993).
55. Urgin, K. et al. Advanced preparation of functionalized triarylbismuths and
triheteroaryl-bismuths: new scope and alternatives. Tetrahedron Lett. 53,
1894–1896 (2012).
67. Selassie, C. & Verma, R. P. Burger’s Medicinal Chemistry, Drug Discovery, and
Development 6th edn, Vol. 1 (John Wiley & Sons, 2003).
68. Sofa, M. J. et al. o-Phenylphenols: potent and orally active leukotriene B4
receptor antagonists. J. Med. Chem. 36, 3978–3981 (1993).
69. Sawyer, J. S. et al. Synthetic and structure/activity studies on acid-substituted
2-arylphenols: discovery of 2-[2-propyl-3-[3-[2-ethyl-4-(4-fuorophenyl)-5-
hydroxyphenoxy]-propoxy]phenoxy]benzoic acid, a high-afnity leukotriene
B4 receptor antagonist. J. Med. Chem. 38, 4411–4432 (1995).
70. Worm, K., Zhou, Q. J., Stabley, G. J., DeHaven, R. N. & Dolle, R. E. Biaryl
cannabinoid mimetics—synthesis and structure–activity relationship. Bioorg.
Med. Chem. Lett. 17, 3652–3656 (2007).
71. Zhang, L. et al. Highly regio- and chemoselective oxidative C–H/C–H
cross-couplings of anilines and phenols enabled by a co-oxidant-free Rh(i)/
Zn(NTf2)2/air catalytic system. ACS Catal. 9, 5358–5364 (2019).
72. Hu, Z. & Liu, G. Rhodium(iii)‐catalyzed cascade redox‐neutral C–H
functionalization and aromatization: synthesis of unsymmetrical ortho‐
biphenols. Adv. Synth. Catal. 359, 1643–1648 (2017).
73. Xiao, B. et al. Synthesis of dibenzofurans via palladium-catalyzed
phenol-directed C–H activation/C–O cyclization. J. Am. Chem. Soc. 133,
9250–9253 (2011).
74. Ciana, C.-L., Phipps, R. J., Brandt, J. R., Meyer, F.-M. & Gaunt, M. J. A highly
para‐selective copper(ii)‐catalyzed direct arylation of aniline and phenol
derivatives. Angew. Chem. Int. Ed. 50, 458–462 (2011).
75. Ivanova, A. et al. Synthesis, functionalization and biological activity
of arylated derivatives of (+)-estrone. Bioorg. Med. Chem. 25,
949–962 (2017).
76. Mewshaw, R. E. et al. ERβ Ligands. 3. Exploiting two binding orientations of
the 2-phenylnaphthalene scafold to achieve ERβ selectivity. J. Med. Chem. 48,
3953–3979 (2005).
77. Marchais-Oberwinkler, S. et al. Substituted 6-phenyl-2-naphthols. Potent and
selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1
(17β-HSD1): design, synthesis, biological evaluation, and pharmacokinetics.
J. Med. Chem. 51, 4685–4698 (2008).
78. Yin, S.-F., Maruyama, J., Yamashita, T. & Shimada, S. Efcient fxation of
carbon dioxide by hypervalent organobismuth oxide, hydroxide, and alkoxide.
Angew. Chem. Int. Ed. 47, 6590–6593 (2008).
79. Qiu, R. et al. Synthesis and structure of binuclear O/S‐bridged organobismuth
complexes and their cooperative catalytic efect on CO2 fxation.
ChemPlusChem 77, 404–410 (2012).
80. Carrow, B. P. & Hartwig, J. F. Distinguishing between pathways for
transmetalation in Suzuki–Miyaura reactions. J. Am. Chem. Soc. 133,
2116–2119 (2011).
81. Lennox, A. J. J. & Lloyd-Jones, G. C. Transmetallation in Suzuk–Miyaura
coupling: the fork in the trail. Angew. Chem. Int. Ed. 52, 7362–7370 (2013).
82. Tomas, A. A. & Denmark, S. E. Pre-transmetalation intermediates in the
Suzuki–Miyaura reaction revealed: the missing link. Science 352,
329–332 (2016).
268