J IRAN CHEM SOC
Scheme 2 Plausible
mechanistic pathway for
[bmim]OH catalysed synthesis
of 1,4,5-trisubstituted-1,2,3-
triazoles
R3
R2
N
O
O-
H
-O
R1-N3
[bmim]OH
-H2O
R3
R3
N
R2
R2
dipolar
cycloaddition
R1
N
H2O
R3
H
R1
R2
R2
N
N
-H2O
N
HO
N
N
R1
N
R3
A
5. P.K. Kadaba, J. Med. Chem. 31, 196 (1988)
6. D.R. Buckle, C.J.M. Rockell, H. Smith, B.A. Spicer, J. Med.
Chem. 29, 2262 (1986)
7. H. Wamhoff, A.R. Katritzky, C.W. Rees, E.F.V. Scriven (eds.),
Comprehensive Heterocyclic Chemistry, vol. 4 (Elsevier Science,
Oxford, 1996)
regioselectivity in the reaction arises because of selective
approach of positively charged terminal nitrogen atom of
aryl azide to electron-rich carbon atom of enolate during
1,3-dipolar addition, which resulted in a formation of only
one favorable cyclic transition state with lower activation
energy and hence only one regioisomer was formed.
8. R. Huisgen, in 1,3 Dipolar Cycloaddition Chemistry, Chap 1, ed.
by A. Padwa (Wiley, New York, 1984)
9. F. Xie, K. Sivakumar, Q. Zeng, M.A. Bruckman, B. Hodges, Q.
Wang, Tetrahedron 64, 2906 (2008)
10. K. Sivakumar, F. Xie, B. Cash, S. Long, H.N. Barnhill, Q. Wang,
Org. Lett. 6, 4603 (2004)
11. P. Wu, A.K. Feldman, A.K. Nugent, C.J. Hawker, A. Scheel, B.
Conclusion
In conclusion, we have reported efficient and environ-
mentally benign methodologies for the synthesis of 1,4,5-
trisubstituted-1,2,3-triazoles in ionic liquid [bmim]BF4 in
the presence of catalytic amount of L-proline and also in
task-specific basic ionic liquid [bmim]OH. Corresponding
triazoles were obtained in good-to-excellent yields by both
methods. These methods offer advantages in terms of
operational simplicity, easy work up, short reaction times
and good yields as compared to previously reported
methods.
´
Voit, J. Pyun, J.M.J. Frechet, K.B. Sharpless, V.V. Fokin, Angew.
Chem. 116, 4018 (2004)
12. P. Wu, A.K. Feldman, A.K. Nugent, C.J. Hawker, A. Scheel, B.
´
Voit, J. Pyun, J.M.J. Frechet, K.B. Sharpless, V.V. Fokin, Angew.
Chem. Int. Ed. 43, 3928 (2004)
13. C.W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 67, 3057
(2002)
14. V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, An-
gew. Chem. 114, 2708 (2002)
15. V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, An-
gew. Chem. Int. Ed. 41, 2596 (2002)
16. A. Johnson, J.M. Baskin, C.R. Bertozzi, J.F. Koberstein, N.J.
Turro, Chem. Commun. 3064 (2008)
17. J.A. Codelli, J.M. Baskin, N.J. Agard, C.R. Bertozzi, J. Am.
Chem. Soc. 130, 11486 (2008)
Acknowledgments HS and JS thank UGC, New Delhi, India for the
Grant of Junior Research Fellowship.
18. M.F. Debets, C.W.J. van der Doelen, F.P.J.T. Rutjes, F.L. van
Delft, ChemBioChem 11, 1168 (2010)
19. B.H.M. Kuijpers, S. Groothuys, A.R. Keereweer, P.J.L.M. Qua-
edflieg, R.H. Blaauw, F.L. van Delft, F.P.J.T. Rutjes, Org. Lett. 6,
3123 (2004)
References
20. J.E. Hein, J.C. Tripp, L.B. Krasnova, K.B. Sharpless, V.V. Fokin,
Angew. Chem. 121, 8162(2009)
21. J.E. Hein, J.C. Tripp, L.B. Krasnova, K.B. Sharpless, V.V. Fokin,
Angew Chem. Int. Ed. 48, 8018 (2009)
22. Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless,
M.G. Finn, J. Am. Chem. Soc. 125, 3192 (2003)
23. J. Gierlich, G.A. Burley, P.M.E. Gramlich, D.M. Hammond, T.
Carell, Org. Lett. 8, 3639 (2006)
24. L.J.T. Danence, Y. Gao, M. Li, Y. Huang, J. Wang, Chem. Eur. J.
17, 3584 (2011)
1. X.M. Chen, Z.J. Li, Z.X. Ren, Z.T. Huang, Carbohydr. Res. 315,
262 (1999)
2. M.J. Genin, D.A. Allwine, D.J. Anderson, M.R. Barbachyn, D.E.
Emmert, S.A. Garmon, D.R. Graber, K.C. Grega, J.B. Hester,
D.K. Hutchinson, J. Morris, R.D. Reischer, D. Stper, B.H. Yagi,
J. Med. Chem. 43, 953 (2000)
3. R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clerq,
C.F. Perno, A. Karlsson, J. Balzarini, M.J. Camarasa, J. Med.
Chem. 37, 4185 (1994)
4. S. Velazquez, R. Alvarez, C. Perez, F. Gago, C. De, J. Balzarani,
M.J. Camarasa, J Antivir. Chem. Chemother. 9, 481 (1998)
25. Y.A. Rozin, J. Leban, W. Dehaen, V.G. Nenajdenko, V.M. Muza-
levskiy, O.S. Eltsov, V.A. Bakulev, Tetrahedron 68, 614 (2012)
123