1366
K. Pomeisl et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1364–1367
Table 1. Inhibition of thymidine phosphorylases by ANPs
References and notes
Compound
PMETb
Inhibition of thymidine phosphorylasea, Vi/V0
E. coli Human, V79 SD- Human
Lymphoma placenta
1. (a) Holy´, A. Curr. Pharm. Design 2003, 9, 2567; (b) Holy´,
A. In Recent Advances in Nucleosides: Chemistry and
Chemotherapy; Chu, C. K., Ed.; Elsevier: Amsterdam,
2002; p 167.
expressed
1.00
1.02
0.84
0.82
1.01
1.05
0.79
0.95
1.12
0.27
0.31
0.11
0.75
n.d.
0.78
n.d.
1.44
0.85
0.84
0.56
n.d.
n.d.
0.91
1.02
0.82
(R)-HPMPTb 0.98
(R)-FPMPTb 0.93
2. Esteban-Gamboa, A.; Balzarini, J.; Esnouf, R.; De Clercq,
´ ´
E.; Camarasa, M.-J.; Perez-Perez, M.-J. J. Med. Chem.
2000, 43, 971.
6a
6b
7a
7b
10
0.98
0.93
1.01
0.94
1.07
3. (a) Friedkin, M.; Roberts, D. W. J. Biol. Chem. 1954, 207,
245; (b) Miyazono, K.; Okabe, T.; Urabe, A.; Takaku, F.;
Heldin, Ch. J. Biol. Chem. 1987, 262, 4098; (c) Usuki, K.;
Sarasi, J.; Waltenberger, J.; Miyazono, K.; Pierce, G.;
Thomason, A.; Heldin, Ch. Biochem. Biophys. Res.
Commun. 1992, 184, 1311.
4. (a) Furakawa, T.; Yoshimura, A.; Sumizawa, T.; Harag-
uchi, M.; Akiyama, S.; Fukui, K.; Ishizawa, M.; Yamada,
Y. Nature 1992, 356, 668; (b) Haraguchi, M.; Miyadera,
K.; Uemura, K.; Sumizawa, T.; Furukawa, T.; Yamada,
K.; Akiyama, S.; Yamada, Y. Nature 1994, 368, 198; (c)
Matsushita, S.; Nitanda, T.; Furukawa, T.; Sumizawa, T.;
Tani, A.; Nishimoto, K.; Akiba, S.; Miyadera, K.;
Fukushima, M.; Yamada, Y.; Yoshida, H.; Kanzaki, T.;
Akiyama, S. Cancer Res. 1999, 59, 1911.
a 100 lM [3H]-20-deoxythymidine, 250 lM Pi (pH 6,7), tested com-
pound 10 lmolÆlꢀ1, an appropriate amount of enzyme, 10 min incu-
bation at 37 ꢁC Ref. 6,9b,15. The inhibitory efficacy is expressed by
Vi/V0 (Vi. . .rate of phosphorolysis in the presence of inhibitors, V0. . .
rate of phosphorolysis in the absence of inhibitors).
b The structures of compared N1-substituted thymine ANPs are shown
in Figure 1.
crease of the inhibitory effect could be induced by low
affinity of N3-substituted ANPs to enzyme in contrast
to N1-substituted derivatives. This probably results from
the differences in recognition of the thymine active site
by a variable formation of potential interactions be-
tween heteroatoms of N1- and N3-substituted thymine
moiety and SD-lymphoma TP or by missing of the thy-
mine essential carbonyl group in correct direction which
may exclude an interaction with those of TP. However,
the marginal values of inhibition on human TP could
also indicate the significant diversity in the phosphate
binding site in both enzymes. Therefore, we have as-
sumed that newly used TP from SD-lymphoma is not
an appropriate model enzyme to human TP probably
due to a supposable short length between the thymine
and phosphate binding sites and this is a subject of cur-
rent research. On the other hand, data obtained from
SD-lymphoma TP afford a valuable information and a
more comprehensive view on problems of pyrimidine
multisubstrate inhibitors and their potential utilization
on model and commercial enzymes.
´
5. Balzarini, J.; Degreve, B.; Esteban-Gamboa, A.; Esnouf,
R.; De Clercq, E.; Engelborghs, Y.; Camarasa, M.-J.;
´
´
Perez-Perez, M.-J. FEBS Lett. 2000, 483, 181.
ˇ
6. Votruba, I.; Pomeisl, K.; Tloust’ova, E.; Holy, A.; Otova,
´
´
´
B. Biochem. Pharmacol. 2005, 69, 1517.
7. Pomeisl, K.; Pohl, R.; Holy´, A.; Votruba, I. Collect.
Czech. Chem. Commun. 2005, 70, 1465.
8. Pomeisl, K.; Votruba, I.; Holy´, A.; Pohl, R. Collect.
Czech. Chem. Commun. 2006, 71, 595.
9. (a) Klein, R. S.; Lenzi, M.; Lim, T. H.; Hotchkiss, K. H.;
Wilson, P.; Schwartz, E. L. Biochem. Pharmacol. 2001, 62,
ˇ
1257; (b) Nencka, R.; Votruba, I.; Hrebabecky, H.;
Tloust’ova, E.; Horska, K.; Masojıdkova, M.; Holy, A.
´
ˇ
´
´
´
´
´
Bioorg. Med. Chem. Lett. 2006, 16, 1335.
10. Norman, R. A.; Barry, S. T.; Bate, M.; Breed, J.; Colls, J.
G.; Ernill, R. J.; Luke, R. W. A.; Minshull, C. A.;
McAlister, M. S. B.; McCall, E. J.; McMiken, H. H. J.;
Paterson, D. S.; Timms, D.; Tucker, J. A.; Pauptit, R. A.
Structure 2004, 12, 75.
11. Voet, D.; Voet, J. G. In Biochemistry; John Wiley & sons
Inc, 1990; p 795, 809.
12. Noell, C. W.; Cheng, C. C. J. Heterocycl. Chem. 1966, 3, 5.
13. A typical N3-alkylation procedure in the synthesis of 9: a
mixture of compound 1 (505 mg, 2.4 mmol) and 60%
sodium hydride dispersion (144 mg, 3.6 mmol) in dimeth-
ylformamide (30 mL) was stirred at room temperature.
After 1 h of stirring, the mixture was allowed to warm to
60 ꢁC and compound 7 (620 mg, 2.4 mmol) in dimethyl-
formamide (20 ml) was added. The resulting mixture was
heated at 100 ꢁC for 9 h until the conversion of 1 finished.
The mixture was concentrated in vacuo to a minimum
volume. The residue was codistilled with toluene (3·
20 mL) and diluted with chloroform (30 mL). The mixture
was filtered through a Celite pad and the filtrate was
concentrated to a minimum volume. The residue was
chromatographed on neutral aluminium oxide (ethyl
acetate/chloroform/methanol = 26:25:1). The crude prod-
uct was purified by preparative TLC (ethyl acetate/
chloroform/methanol = 26:25:1). The relevant fractions
were combined and evaporated in vacuo. Yield 592 mg
(57%) of a colourless liquid: IR mmax (CCl4) 2980, 1707,
1672, 1651, 1462, 1451, 1386, 1375, 1260, 1250, 1181, 1142,
Acknowledgments
The study has been performed as a part of research pro-
ject #Z 40550506 of the Institute of Organic Chemistry
and Biochemistry, Academy of Sciences of the Czech
Republic and the Centre of New Antivirals and
Antineoplastics 1M0508 supported by the Ministry of
Education of the Czech Republic. The financial support
of the Program of target projects of Academy of Sci-
ences of the Czech Republic (Grant #1QS400550501)
and of Gilead Sciences (Foster City, CA, USA) is grate-
fully acknowledged.
Supplementary data
1
1107, 1089, 1063, 1046, 1010, 991, 889, 556, 503 cmꢀ1; H
Supplementary data associated with this article can be
NMR (CDCl3) d 1.322, 1.324, 1.346 and 1.35 (4· d, 4· 3H,
Jvic = 6.2, (CH3)2CH), 1.57–1.78 (m, 4H, CH2–THP), 1.87