anion. These results indicated that these ionic salts could
possess larger hyperpolarizabilities with stronger electron-
donating ability of the substituent on the phenyl ring.
In conclusion, we have successfully achieved the synthesis of
several novel low-melting salts with donor–acceptor sub-
stituents. Some of the salts fall into the ionic liquid class
(Tm o 100 1C). We have explored the possible application
of ionic liquids as second-order nonlinear optical materials.
Most of them exhibit excellent properties including good NLO
effect, high thermal stability and low melting point, which may
be useful for nonlinear optical applications.
Fig. 1 Single-crystal X-ray crystal structure of 3d.
Table 1 Thermal properties of 2, 3 and 4
We thank the Chinese Academy of Sciences (Hundreds of
Talents Program) and the National Natural Science Founda-
tion (20772147) for financial support.
Entry
Compd.
R1
Tma/1C
Tdb/1C
c
1
2
3
4
5
6
7
8
2a
2b
2c
2d
3a
3b
3c
3d
4a
4b
4d
b
H
CH3
OH
OCH3
H
CH3
OH
OCH3
H
CH3
OCH3
—
—
—
—
253.8
231.5
228.9
223.6
314.8
323.3
277.3
297.2
404.6
375.8
368.2
c
Notes and references
c
c
z Crystal data for 3d: C16H13F6N4O5P, M = 486.26, monoclinic,
space group P21/c,
V
a
=
=
11.1474(10),
b
=
=
16.3515(15),
Z
c
=
=
4,
203.2
161.3
215.3
159.4
109.3
69.6
12.3412(11) A,
2024.6(3) A3,
T
293(2) K,
m(Mo-Ka) = 0.228 mmꢀ1, R1 = 0.0755, wR2 = 0.2264 (I 4 2s(I));
R1 = 0.1069, wR2 = 0.2522 (all data). CCDC 682525.
9
10
11
a
1 (a) S.-Y. Liao, K.-J. Lin, L.-L. Lai and C.-T. Chen, Adv. Mater.,
1998, 10, 334; (b) V. Alain, L. Thouin, U. Gubler, C. Bosshard, P.
Gunter, J. Muller, A. Fort, M. Barzoukas and M. Blanchard-
¨
82.3
c
Melting point. Thermal decomposition temperature. Decom-
posed before melting.
Desce, Adv. Mater., 1999, 11, 1210; (c) M. T. Murillo, P. Prados,
H. Al-Saraierh, A. El-Dali, D. W. Thompson, J. Collins, A.
Teshome, I. Asselberghs, G. Hennrich, P. E. Georghiou and K.
Clays, Chem.–Eur. J., 2007, 13, 7753; (d) D. R. Kanis, M. A.
Ratner and T. J. Marks, Chem. Rev., 1994, 94, 195; (e) T.-D. Kim,
J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-H. Zhou, Y.
Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton and A. K.-Y.
Jen, J. Phys. Chem. C, 2008, 112, 8091; (f) S. R. Marder, J. W.
Perry and C. P. Yakymyshyn, Chem. Mater., 1994, 6, 1137.
2 (a) Anwar S. Okada, H. Oikawa and H. Nakanishi, Chem. Mater.,
2000, 12, 1162; (b) N. J. Long, Angew. Chem., Int. Ed. Engl., 1995,
34, 21.
stabilities even at around 300 1C as determined by thermogravi-
metric analysis (TGA) (entries 5–11).
With these low-melting salts in hand, the second-order
nonlinearities were then evaluated using a hyper-Rayleigh
scattering14 (HRS) measurement as shown in Table 2. The
first hyperpolarizabilities of these compounds were all larger
than those of PNA (4-nitroaniline), which indicated that they
might become better second-order NLO materials than PNA
derivatives. The relationship between the structure and the
hyperpolarizabilities could be clearly observed. On the one
hand, the anion has a certain influence on the hyperpolariz-
ability. For a given substituent on the phenyl ring, changing
the anion PF6ꢀ in 3a–c to NTf2ꢀ in 4a–d led to some decrease
in the second-order NLO properties. On the other hand,
comparison of hyperpolarizabilities of the ionic salts contain-
ing differently substituted cations with the same anion clearly
illustrates the influence of the substituents. For example, with
hexafluorophosphate (PF6ꢀ) as the anion, on variation of the
substituents from methyl (3b) to hydroxyl (3c), the value of
b (10ꢀ30 esu) increased from 176 to 214 (entries 2–3). A similar
tendency can also be observed from 4a to 4d with NTf2ꢀ as the
3 (a) S. R. Marder, D. N. Beratan and L.-T. Cheng, Science, 1991,
252, 103; (b) V. Diemer, A. Defoin, A. Fort, A. Boeglin, C. Carre
´
and H. Chaumeil, Eur. J. Org. Chem., 2006, 12, 2727; (c) B.
Wustenberg and N. R. Branda, Adv. Mater., 2005, 17, 2134.
¨
4 (a) J. A. Delaire and K. Nakatani, Chem. Rev., 2000, 100, 1817; (b)
O. R. Evans and W. Lin, Acc. Chem. Res., 2002, 35, 511.
5 For recent views, see: (a) K. Binnemans, Chem. Rev., 2007, 107,
2592; (b) R. A. Sheldon and F. Rantwijk, Chem. Rev., 2007,
107, 2757; (c) V. I. Parvulescu and C. Hardacre, Chem. Rev.,
2007, 107, 2615; (d) S. Stolte, R. Stormann, J. Arning, B. Jastorff
and J. Ranke, Chem. Rev., 2007, 107, 2183.
6 (a) A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J. Weaver, D.
C. Forbes and J. H. Davis, Jr, J. Am. Chem. Soc., 2002, 124, 5962;
(b) D. W. Kim, C. E. Song and D. Y. Chi, J. Am. Chem. Soc., 2002,
124, 10278; (c) J. G. Huddleston, H. D. Willauer, R. P. Swatloski,
A. E. Visser and R. D. Rogers, Chem. Commun., 1998, 1765;
(d) J. A. Whitehead, A. McCluskey and G. A. Lawrance, Green
Chem., 2004, 6, 313.
7 (a) H. Xue and J. M. Shreeve, Adv. Mater., 2005, 17, 2142; (b) Y.
Guo, H. Gao, B. Twamley and J. M. Shreeve, Adv. Mater., 2007,
19, 2884; (c) R. P. Singh, R. D. Verma, D. T. Meshri and J. M.
Shreeve, Angew. Chem., Int. Ed., 2006, 45, 3584.
Table 2 The second-order nonlinearities of 3 and 4
Entry
Compd.
R1
ba/10ꢀ30 esu
b0b/10ꢀ30 esu
8 C. Guerrero-Sanchez, T. Lara-Ceniceros, E. Jimenez-Regalado,
M. Rasa and U. S. Schubert, Adv. Mater., 2007, 19, 1740.
9 (a) M. Yoshio, T. Mukai, K. Kanie, M. Yoshizawa, H. Ohno and
T. Kato, Adv. Mater., 2002, 14, 351; (b) K. Binnemans, Chem.
Rev., 2005, 105, 4148.
10 R. E. D. Sesto, C. Corley, A. Robertson and J. S. Wilkes,
J. Organomet. Chem., 2005, 690, 2536.
11 (a) J.-C. Xiao, B. Twamley and J. M. Shreeve, Org. Lett., 2004,
6, 3845; (b) J.-C. Xiao, C. Ye and J. M. Shreeve, Org. Lett., 2005, 7,
1963; (c) J.-C. Xiao and J. M. Shreeve, J. Org. Chem., 2005, 70,
1
2
3
4
5
6
a
3a
3b
3c
4a
4b
4d
H
158
176
214
135
140
151
119
133
161
102
105
114
CH3
OH
H
CH3
OCH3
Measured in THF relative to PNA (bPNA = 21.4 ꢂ 10ꢀ30 esu) at
1064 nm, the error is ꢃ10%. Calculated using the two-level model.15
b
ꢁc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5016–5018 | 5017