5400
D. Chaturvedi et al. / Tetrahedron Letters 53 (2012) 5398–5401
COOEt
Ph3P
N
N
COOEt
Ph3P
EtOOC N N COOEt
+
Mitsunobu's zwiterion A
COOEt
COOEt
H
Ph3P
R1
N
N
COOEt
O
PPh3
N
N
COOEt
O
R1
N
H
R2
R2
B
R
RNH2
-Ph3PO, (NHCOOEt)2
TMSCN
R1
CN
NHR
R2
I
Scheme 2. Proposed mechanism of formation.
4. (a) Matier, W. L.; Owens, D. A.; Comer, W. T.; Deitchman, D.; Ferguson, H.;
Seidehamel, R. J.; Young, J. R. J. Med. Chem. 1973, 16, 901–908; (b) Ohfune, Y.;
Shinada, T. Eur. J. Org. Chem. 2005, 24, 5127–5143; (c) Friestad, G. K.; Mathies,
A. K. Tetrahedron 2007, 63, 2541–2569; (d) Connon, S. J. Angew. Chem., Int. Ed.
2008, 47, 1176–1178.
kinds of
a-aminonitriles from a variety of carbonyl compounds
(aldehydes and ketones) have been synthesized employing Mits-
unobu’s reagent and their structural confirmation was correlated
with the reported authentic data as depicted in Table 2.
5. (a) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359–373; (b) Gembus, V.;
Janvier, S.; Lecouve, J.-P.; Gloanec, P.; Marsais, F.; Levacher, V. Eur. J. Org. Chem.
2010, 3583–3586; (c) Yin, B.; Zhang, Y.; Xu, L.-W. Synthesis 2010, 3583–3595.
6. (a) Strecker, A. Liebigs Ann. Chem. 1850, 75, 27–45; (b) Merino, P.; Marques-
Lopez, E.; Tejero, T.; Herrera, R. P. Tetrahedron 2009, 65, 1219–1234; (c) Pastori,
N.; Gambarotti, C.; Punta, C. Mini. Rev. Med. Chem. 2009, 6, 184–195; (d)
Shibasaki, M.; Kanai, M.; Mita, T. Org. React. 2008, 70, 1–119; (e) Wang, J.; Liu,
X.; Feng, X. Chem. Rev. 2011, 111, 6947–6983.
7. (a) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069–1094; (b) Bhanu
Prasad, B. A.; Bisai, A.; Singh, V. K. Tetrahedron Lett. 2004, 45, 9565–9567; (c)
Harusawa, S.; Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1979, 20, 4663–4666; (d)
Nakamura, S.; Sato, N.; Sugimoto, M.; Toru, T. Tetrahedron Assym. 2004, 15,
1513–1516; (e) Kantam, M. L.; Mahendar, K.; Sreedhar, B.; Choudary, B. M.
Tetrahedron 2008, 64, 3351–3360; (f) Li, Z.; Ma, Y.; Xu, J.; Shi, J.; Cai, H.
Tetrahedron Lett. 2010, 51, 3922–3926; (g) Cruz-Acosta, F.; Santos-exposito, A.;
Armas, P.; Garcia-Tellado, F. Chem. Commun. 2009, 6839–6841; (h) Sipos, S.;
Jablonkai, I. Tetrahedron Lett. 2009, 50, 1844–1846; (i) Abell, J. P.; Yamamoto, H.
J. Am. Chem. Soc. 2009, 131, 15118–15119.
8. (a) De, S. K. J. Mol. Catal. A.: Chem. 2005, 225, 169–171; (b) North, M. Angew.
Chem., Int. Ed. 2004, 43, 4126–4128; (c) Murahashi, S. I.; Komia, N.; Terai, H.;
Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312–15313; (d) Ranu, B. C.; Dey, S. S.;
Hajra, A. Tetrahedron 2002, 58, 2529–2532; (e) Shen, Z. L.; Ji, S. J.; Loh, T. P.
Tetrahedron 2008, 64, 8159–8163; (f) Narasimhulu, M.; Reddy, T. S.; Mahesh, K.
C.; Reddy, S. M.; Reddy, A. V.; Venkateshwarlu, Y. J. Mol. Catal. A.: Chem. 2007,
264, 288–292; (g) De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407–7408;
(h) Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595–4597; (i)
Karmakar, B.; Banerji, J. Tetrahedron Lett. 2010, 51, 2748–2750; (j) Mojtahedi,
M. M.; Abaee, S.; Alishiri, T. Tetrahedron Lett. 2009, 50, 2322–2325; (k) Paraskar,
S.; Sudalai, A. Tetrahedron Lett. 2006, 47, 5759–5762; (l) Kobayashi, S.;
Busujima, T.; Nagayama, S. Chem. Commun. 1998, 981–982; (m) Martinez, R.;
Ramon, D. J.; Yus, M. Tetrahedron Lett. 2005, 46, 8471–8474; (n) Zhang, G. W.;
Zheng, D. H.; Nie, J.; Wang, T.; Ma, J. A. Org. Biomol. Chem. 2010, 8, 1399–1405;
(o) Ramesh, S.; Shivakumar, K.; Panja, C.; Arunanchalam, P. N.; Lalitha, A. Synth.
Commun. 2010, 40, 3544–3551; (p) Paraskar, A. S.; Sudalai, A. Tetrahedron Lett.
2006, 47, 5759–5762; (q) Wang, J.; Masui, Y.; Onaka, M. Eur. J. Org. Chem. 2010,
1763–1771.
9. (a) Hajipour, A. R.; Ghayeb, Y.; Sheikhan, N. J. Iran. Chem. Soc. 2010, 7, 447–454;
(b) Khan, N. H.; Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Singh, S.; Suresh, E.;
Jasra, R. V. Tetrahedron Lett. 2008, 49, 640–644; (c) Rafiee, E.; Rashidzadeh, S.;
Joshaghani, M.; Chalabeh, H.; Afza, K. Synth. Commun. 2008, 38, 2741–2747; (d)
Kantam, M. L.; Mahender, K.; Sreedhar, B.; Choudhary, B. M. Tetrahedron 2008,
64, 3351–3360; (e) Oskooie, H. A.; Heravi, M. M.; Sadnia, A.; Jannati, F.;
Behbahani, F. K. Monatsh. Chem. 2008, 139, 27–29; (f) Arefi, H. A.; Khaksar, S.;
Shiroodi, R. K. J. Mol. Catal. A.: Chem. 2007, 271, 142–146; (g) Shaabani, A.;
Maleki, A. Appl. Catal. A: Gen. 2007, 331, 149–151; (h) Yadav, J. S.; Reddy, B. V.
S.; Eeshwarain, B.; Srinivas, M. Tetrahedron 2004, 60, 1767–1771; (i) Rafiee, E.;
Rashidzadeh, S.; Azad, A. J. Mol. Catal. A.: Chem. 2007, 261, 49–52; (j) Yadav, J. S.;
Reddy, B. V. S.; Eshwaraiah, B.; Srinivas, M.; Vishnumurthy, P. New J. Chem.
2003, 27, 262–465; (k) De, S. K. Synth. Commun. 2005, 35, 1577–1582; (l)
We propose that Mitsunobu’s reagent plays a crucial role in
facilitating this transformation through in situ generation of imine.
Initially, the Mitsunobu zwitterion A formed through the reaction
of triphenylphosphine with diethylazadicarboxylate, reacts with
the mixture of a keto-compound and amine generating the inter-
mediate B. The electronic rearrangement of intermediate B result-
ing in situ generated imine which on subsequent nucleophilic
attack of cyanide ion afforded the corresponding
in a one-pot reaction (Scheme 2).
a-aminonitrile I
In conclusion, we have developed a simple and efficient method
for the synthesis of -aminonitriles starting from their correspond-
a
ing carbonyl compounds, amines, and trimethylsilyl cyanide using
Mitsunobu’s reagent under solvent-free conditions. Mitsunobu’s
reagent a cheap, easy to handle, and mild reagent has been used
during the course of this reaction to generate the corresponding
imines from a variety of aldehydes and ketones, afforded the
desired a-aminonitriles in high yields (80–99%).
Acknowledgements
Author is thankful to Pro-Vice Chancellor, Amity University
Uttar Pradesh, Lucknow Campus, for his constant encouragement
and support for research.
References and notes
1. (a) Undavia, N. K.; Patwa, B. S.; Navadiya, H. D.; Jivani, A. R.; Dave, P. N. Int. J.
Chem. Sc. 2009, 7, 1019–1026; (b) Mantri, M.; de Graaf, O.; van Veldhoven, J.;
Goeblyoes, A.; von Frijtag, D. K.; Jacobien, K.; Mulder-Krieger, T.; Link, R.; de
Vries, H.; Beukers, M. W.; Brussee, J.; IJzerman, A. P. J. Med. Chem. 2008, 51,
4449–4455; (c) Loeser, R.; Schilling, K.; Dimmig, E.; Guetschow, M. J. Med.
Chem. 2005, 48, 7688–7707; (d) Ward, Y. D.; Thomson, D. S.; Frye, L. L.; Cywin,
C. L.; Morwick, T.; Emmanuel, M. J.; Zindell, R.; McNeil, D.; Bekkali, Y.; Giradot,
M.; Hrapchak, M.; DeTuri, M.; Crane, K.; White, D.; Pav, S.; Wang, Y.; Hao, M.-
H.; Grygon, C. A.; Labadia, M. E.; Freeman, D. M.; Davidson, W.; Hopkins, Jerry
L.; Brown, M. L.; Spero, D. M. J. Med. Chem. 2002, 45, 5471–5482.
´
2. (a) Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584–4671; (b) Zuend, S. J.;
Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N. Nature 2009, 461, 968–970.
3. (a) Groger, H. Chem. Rev. 2003, 103, 2795–2827; (b) Shafran, Y. M.; Bakulev, V.
A.; Mokrushin, V. S. Russ. Chem. Rev. 1989, 58, 148–162; (c) Michaux, J.; Niel, G.;
Campagne, J.-M. Chem. Soc. Rev. 2009, 38, 2093–2116.