1752
V. B. Ganga et al. / Tetrahedron Letters 49 (2008) 1750–1752
7. Mandolini, L.; Ungaro, R. In Calixarenes in Action; Imperial College:
London, 2000.
8. Litwak, A. M.; Biali, S. E. J. Org. Chem. 1992, 57, 1943.
9. Aleksiuk, O.; Grynszpan, F.; Biali, S. E. J. Chem. Soc., Chem.
Commun. 1993, 11.
quantitative yield of cycloadduct 4d. The reactivity was
found to be different for different nitrones. Substituents
at the para position of the C-phenyl group were found to
have no significant influence on the reactivity.
[3+2] Dipolar cycloaddition reactions of nitrones to
alkenes result in 4- or 5-substituted isoxazolidines, the reg-
iochemistry being governed by the electronic nature of the
alkenes. Electron rich or neutral alkenes give rise predom-
inantly to 5-substituted isoxazolidines, whereas a reversal
of regioselectivity is observed in the case of alkenes subs-
tituted with one or more powerful electron withdrawing
groups such as cyano. This has been attributed to the lower
orbital energies of alkenes with electron withdrawing
groups favouring interaction between the HOMO of the
dipole with the LUMO of the alkene which results in the
formation of 4-substituted isoxazolidines. The calix[4]-
bis(spirodienone) can be considered as a neutral alkene
and, as expected a 5-substituted isoxazolidine is formed
exclusively as confirmed by the X-ray crystal structure. It
was also observed that the substituents at the C-phenyl
have no significant effect on the reactivity but the rate of
reaction was considerably influenced by these substituents.
In summary, we have introduced an isoxazolidine moiety
to calix[4]bis(spirodienones) via 1,3-dipolar cycloaddition
of nitrones. The bisadducts were obtained regiospecifically.
Studies to transform the isoxazolidines to the highly func-
tionalized macrocycles are underway and a detailed study
of the reactivity of bis(spirodienones) with C-aryl, N-alkyl-
nitrones and other 1,3-dipoles is in progress.
10. Litwak, A. M.; Grynszpan, F.; Aleksiuk, O.; Cohen, S.; Biali, S. E.
J. Org. Chem. 1993, 58, 393.
11. Aleksuik, O.; Grynszpan, F.; Biali, S. E. J. Org. Chem. 1993, 58, 1994.
12. Grynszpan, F.; Biali, S. E. J. Chem. Soc., Chem. Commun. 1994,
2545.
13. Grynszpan, F.; Aleksiuk, F.; Biali, S. E. J. Org. Chem. 1994, 59,
2070.
14. Simaan, S.; Agbaria, K.; Biali, S. E. J. Org. Chem. 2002, 67, 6136.
15. Biali, S. E. Synlett 2003, 1, 1.
16. Varma, L. R.; Ganga, V. B.; Suresh, E. Tetrahedron Lett. 2005, 46,
3061.
17. Varma, L. R.; Ganga, V. B.; Suresh, E.; Suresh, C. H. Tetrahedron
Lett. 2006, 47, 917.
18. Ganga, V. B.; Sreeja, T.; Suresh, E.; Varma, L. R. Tetrahedron 2007,
63, 4134.
19. Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A.,
Ed.; Wiley: New York, 1984; Vol. 2, p 83.
20. Gallos, J. K.; Demeroudi, S. C.; Stathopoulou, C. C.; Dellios, C. C.
Tetrahedron Lett. 2001, 42, 7497.
21. Gallos, J. K.; Damianou, K. C.; Dellios, C. C. Tetrahedron Lett. 2001,
42, 5769.
22. Sims, J.; Houk, K. N. J. Am. Chem. Soc. 1973, 95, 5798.
23. Typical experimental procedure: To
a solution of 2a (50 mg,
0.08 mmol) in dry toluene (4 ml) was added 3a (37 mg, 0.16 mmol).
The reaction mixture was heated at 110 °C under an inert atmosphere
for 92 h. The solvent was removed in vacuo and the crude product
was purified by silica gel column chromatography (eluent, 90:10
hexanes/EtOAc) to afford product 4a in 73% yield as a white
crystalline solid. The compound was crystallized from dichloro-
methane/acetonitrile mixture (3:1). Mp >300 °C. IR (KBr) mmax: 2958,
1659, 1595, 1484, 1361, 1320, 1285, 1250, 1167, 876, 749 cmꢀ1 1H
.
t
t
NMR (CDCl3, 300 MHz) 0.92 (s, 18H, Bu), 1.35 (s, 18H, Bu), 1.96
(d, J = 15.3 Hz, 2H, –CH2–), 2.98 (d, J = 15.3 Hz, 2H, –CH2–), 3.44
(d, J = 15.0 Hz, 2H, –CH2–), 3.51 (d, J = 4.5 Hz, 2H, bridgehead H),
3.77 (s, 6H, –OCH3), 4.05 (d, J = 15.3 Hz, 2H, –CH2–), 4.49 (d,
J = 4.8 Hz, 2H, benzylic H), 6.11 (s, 2H, alkenyl H), 6.79 (m, 12 H, Ar
H), 7.09 (s, 2H, ArH of calixarene), 7.20 (m, 4H, ArH), 7.35 (d,
J = 8.7 Hz, 4H). 13C NMR (CDCl3, 75 MHz) 190.6, 159.0, 152.7,
150.9, 144.2, 143.8, 140.5, 134.3, 128.6, 128.5, 126.9, 125.2, 120.7,
120.1, 114.2, 112.6, 90.0, 88.1, 71.6, 60.6, 55.2, 36.4, 34.6, 34.3, 33.þ2,
Acknowledgements
V.B.G. thanks the CSIR, Government of India, New
Delhi for Research Fellowships. Thanks are also due to
Ms. Saumini Mathew and Ms. S. Viji for NMR and mass
spectral data.
References and notes
32.3, 31.9, 27.8, 26.9. MS (FAB): m/z calcd for C72H78N2O8
:
1098.57. Found: 1098.10. Anal. Calcd for C72H78N2O8: C, 78.66; H,
7.15; N, 2.55. Found: C, 76.16; H, 6.84; N, 3.45.26
1. Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161.
24. Bruning, I.; Grashey, R.; Hauck, H.; Huisgen, R.; Seidl, H. Org.
2. Wieser, C.; Dieleman, C. B.; Matt, D. Coord. Chem. Rev. 1997, 165,
93.
¨
Synth. 1973, Coll. Vol. 5, 1124.
25. The crystal structure has been deposited at the Cambridge Crystallo-
graphic Data Centre and allocated the deposition number CCDC
657150.
26. We could not obtain satisfactory microanalytical data for 4a. This
seems to be a feature of several calixarene systems. See: Bo¨hmer, V.;
Jung, K.; Scho¨n, M.; Wolff, A. J. Org. Chem. 1992, 57, 790.
3. Cafeo, G.; Kohnke, F. H.; La Torre, G. L.; Parisi, M. F.; Nascone, R.
P.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 2002, 8, 3148.
4. Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713.
5. Casnati, A.; Sansone, F.; Ungaro, R. Acc. Chem. Res. 2003, 36, 246.
6. Asfari, Z.; Bo¨hmer, V.; Harrowfield, J.; Vicens, J. In Calixarenes
2001; Kluwer Academic: Dordrecht, 2001.