effective route could exploit the natural reactivity of nitro
alkanes toward imines (the nitro-Mannich reaction) followed
by an intramolecular cyclization to the δ-lactam 4.7 This
would provide the core; the remainder of the synthesis would
require reductive manipulation of nitro, amide, and ester
functionalites (Scheme 1).
This material was recrystallized to enantiomeric purity
from hexane/TBME, (4:1) giving an overall reaction yield
of 87% to enantiopure 10. A nickel boride reduction of the
nitro group yielded the transesterified γ-lactam 11, which
was decarboxylated in a two stage hydrolysis/thermolysis
procedure to afford (R)-rolipram 1 as a single enantiomer in
63% overall yield over six steps (Scheme 2).
Scheme 1. Synthetic Plan to (R)-Rolipram 1 and
(3S,4R)-Paroxetine 2 from a Michael Adduct of Malonate and
Nitro Olefin
Scheme 2. Total Synthesis of (R)-Rolipram 1, Using
Bifunctional Organocatalyst 9
Key to the synthesis of (R)-rolipram 1 is the ready con-
struction of nitro olefin 8. This was prepared in 2 steps on
multigram scale from the commercially available hydroxy
aldehyde 6. An initial alkylation using cyclopentylbromide
and potassium carbonate in DMF provided ether 7 which
was then subjected to standard Henry condensation condi-
tions to give nitro olefin 8 in 80% yield over 2 steps. The
enantioselective Michael addition of dimethyl malonate to
8 catalyzed by 9 occurred smoothly at -20 °C in dichlo-
romethane; product 10 was formed in 96% yield and in
94% ee.
Our route to (3S,4R)-paroxetine 2 began in a similar
manner. The key nitro olefin 13 was prepared in a single
step from the commercially available aldehyde 12 in 92%
yield. The enantioselective malonate Michael addition to 13
(3) Schmiechen, R.; Horowski, R.; Palenschat, D.; Paschelke, G.;
Wachtel, H.; Kehr, W. U.S. Patent 4012495, 1975.
(6) For previous total and formal syntheses, see: (a) Plati, J. T.;
Ingberman, A. K.; Wenner, W. J. Org. Chem. 1956, 22, 261. (b) Christensen,
J. A.; Squires, R. F. U.S. Patent 3912743, 1974. (c) Christensen, J. A.;
Squires, R. F. U.S. Patent 4007196, 1975. (d) Yu, M. S.; Lantos, I.; Peng,
Z-Q.; Yu, J.; Cacchio, T. Tetrahedron Lett. 2000, 41, 5647. (e) Senda, T.;
Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852. (f) Hughes, G.;
Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253. (g)
Czibula, L, Nemes, A.; Sebo¨k, F.; Sza´ntay, C., Jr.; Ma´k, M. Eur. J. Org.
Chem. 2004, 3336. (h) Takasu, K.; Nishida, N.; Tomimura, A.; Ihara, M.
J. Org. Chem. 2005, 70, 3957. (i) Koech, P. K.; Krische, M. J. Tetrahedron
2006, 62, 10594.(j) Brandau, S.; Landa, A.; Franze´n, J.; Marigo, M.;
Jørgensen, K. A.; Angew. Chem., Int. Ed. 2006, 45, 4305. (k) Bower, J. F.;
Riis-Johannessen, T.; Szeto, P.; Whitehead, A. J.; Gallagher, T. Chem.
Commun. 2007, 728. (l) Ito, M.; Sakaguchi, A.; Kobayashi, C.; Ikariya, T.
J. Am. Chem. Soc. 2007, 129, 290.
(7) For selected examples, see: (a) Mu¨hlsta¨dt, M.; Schultze, B. J. Prakt.
Chem. 1975, 317, 919. (b) Bhagwatheeswaran, H.; Gaur, S. P.; Jain, P. C.
Synthesis 1976, 615. (c) Desai, M. C.; Thadeio, P. F.; Lefkowitz, S. L.
Tetrahedron Lett. 1993, 34, 5831. (d) Xu, F.; Corley, E.; Murry, J. A.;
Tschaen, D. M. Org. Lett. 2007, 9, 2669. For an early example of the nitro-
Mannich reaction applied to the stereoselective synthesis of 1,2-diamines,
see: (e) Adams, H.; Anderson, J. C.; Peace, S.; Pennell, A. M. K. J. Org.
Chem. 1998, 63, 9932.
(4) Barnes; R, D.; Wood-Kaczmar, M. W.; Curzons, A. D.; Lynch, I.
R.; Richardson; J. E.; Buxton; P. C. U.S. Patent 24721723, 1986.
(5) For previous stereoselective syntheses see: (a) Baures, P. W.;
Eggleston, D. S.; Erhard, K. F.; Cieslinski, L. B.; Torphy, T. J.; Christensen,
S. B. J. Med. Chem. 1993, 36, 3274. (b) Mulzer, J. J. Prakt. Chem. 1994,
336, 287. (c) Honda, T.; Ishikawa, F.; Kanai, K.; Sato, S.; Kato, D.;
Tominaga, H. Heterocycles 1996, 42, 109. (d) Alvarez-Builla, J.; Diaz, A.;
Siro, J. G.; Garcia-Navio, J. L.; Vaquero, J. J. Synthesis 1994, 559. (e)
Meyers, A. I.; Snyder, L. J. Org. Chem. 1993, 58, 36. (f) Mulzer, J.; Zuhse,
R.; Schmiechen, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 870. (g) Itoh,
K.; Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394. (h) Barnes, D. M.;
Ji, J.; Fickes, M. G.; Fitzgerald, M. A.; King, S. A.; Morton, H. E.; Plagge,
F. A.; Preskill, M.; Wagaw, S. H.; Wittenberger, S. J.; Zhang, J. J. Am.
Chem. Soc. 2002, 124, 13097.(i) Becht, J. M.; Meyer, O.; Helmchen, G.
Synthesis 2003, 2805. (j) Anada, M.; Mita, O.; Watanabe, H.; Kitagaki, S.;
Hashimoto, S. Synlett 1999, 1775. (k) Liu, W-J.; Chen, Z-L.; Chen, Z-Y.;
Hu, W-H. Tetrahedron: Asymmetry 2005, 16, 1693.(l) Paraskar, A. S.;
Sudalai, A. Tetrahedron 2006, 62, 4907-4916. (m) Lubkoll, J.; Wennemers,
H. Angew. Chem., Int. Ed. 2007, 46, 6841. (n) Deng, J.; Duan, Z.-C.; Huang,
J.-D.; Hu, X.-P.; Wang, D.-Y.; Yu, S.-B.; Xu, X.-F.; Zheng, Z. Org. Lett.
2007, 9, 4825.
1390
Org. Lett., Vol. 10, No. 7, 2008