1500; (d) Q. He, E. W. Miller, A. P. Wong and C. J. Chang, J. Am.
Chem. Soc., 2006, 128, 9316; (e) Y. Zhang, X. Guo, W. Si, L. Jia
and X. Qian, Org. Lett., 2008, 10, 473.
2 (a) M. P. Cuajungco and K. Y. Faget, Brain Res. Rev., 2003, 41,
44; (b) M. Ebadi, F. Perini, K. Mountjoy and J. S. Garvey,
J. Neurochem., 1996, 66, 2121; (c) J. M. Berg and Y. Shi, Science,
1996, 271, 1081.
Fig. 4 The intracellular Zn2+ was imaged in living cells at 37 1C with
use of confocal microscopy. (a) MCF-7 cells incubated with 10 mM of
compound 1 solution (the volume ratio of ethanol and water is 4 to 6)
for 30 min. (b) MCF-7 cells in part a 10 min after being treated with
2 Â 10À2 mmol of Zn2+ aqueous solution. (c) Bright field image of
living MCF-7 cells in parts a and b.
3 (a) J. P. Desvergne and A. W. Czarnik, Chemosensors of Ion and
Molecule Recognitionk, Kluwer, Dordrecht, 1997; (b) U. S.
Spichiger-Keller, Chemical Sensors and Biosensors for Medical
and Biological Applications, Wiley-VCH, Weinheim, Germany,
1998; (c) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice,
Chem. Rev., 1997, 97, 1515; (d) K. Rurack and U. Resch-Genger,
Chem. Soc. Rev., 2002, 31, 116; (e) J. Mao, L. Wang, W. Dou,
X. Tang, Y. Yan and W. Liu, Org. Lett., 2007, 9, 4567.
4 (a) C. E. Felton, L. P. Harding, J. E. Jones, B. M. Kariuki,
S. J. A. Pope and C. R. Rice, Chem. Commun., 2008, 6185;
(b) H.-H. Wang, Q. Gan, X.-J. Wang, L. Xue, Sh.-H. Liu and
H. Jiang, Org. Lett., 2007, 9, 4995; (c) J.-S. Wu, W.-M. Liu,
X.-Q. Zhuang, F. Wang, P.-F. Wang, S.-L. Tao, X.-H. Zhang,
S.-K. Wu and S.-T. Lee, Org. Lett., 2007, 9, 33; (d) H.-Y. Gong,
Q.-Y. Zheng, X.-H. Zhang, D.-X. Wang and M.-X. Wang,
Org. Lett., 2006, 8, 4895; (e) C. Lu, Z. Xu, J. Cui, R. Zhang and
X. Qian, J. Org. Chem., 2007, 72, 3554; (f) Y. Mikata,
M. Wakamatsu and S. Yano, Dalton Trans., 2005, 545;
(g) M. M. Henary, Y. Wu and C. J. Fahrni, Chem.–Eur. J.,
2004, 10, 3015; (h) K. Hanaoka, K. Kikuchi, H. Kojima,
Y. Urano and T. Nagano, Angew. Chem., Int. Ed., 2003, 42, 2996.
5 (a) L. Xue, C. Liu and H. Jiang, Chem. Commun., 2009, 1061;
(b) D. A. Pearce, N. Jotterand, I. S. Carrico and B. Imperiali,
J. Am. Chem. Soc., 2001, 123, 5160; (c) G. K. Walkup,
S.C. Burdette, S. J. Lippard and R. Y. Tsien, J. Am. Chem. Soc.,
2000, 122, 5644; (d) C. C. Woodroofe and S. J. Lippard, J. Am.
Chem. Soc., 2003, 125, 11458; (e) K. Komatsu, K. Kikuchi,
H. Kojima, Y. Urano and T. Nagano, J. Am. Chem. Soc.,
2005, 127, 10197; (f) P. Carol, S. Sreejith and A. Ajayaghosh,
Chem.–Asian J., 2007, 2, 338.
explore the disturbance of such metal ions on the detection of
Zn2+. The titration of Zn2+ and 1 in the presence of various
metal ions was conducted, and the experimental results (the right
part in Fig. 3) indicate that the fluorescence of the complex
resulting from the reaction of Zn2+ and 1 was not influenced by
the alkali and alkaline earth metal ions, even at a high concen-
tration of 6 mM. Furthermore, the other physiological necessary
metal ions such as Fe2+, Cu2+, Mn2+, Cr2+, Co2+, Ni2+ were
also applied to explore their disturbance on the detection of
Zn2+. When the ratio of Zn2+ to such metal ions is no less
than 5, no influence was observed on the detection of Zn2+
.
The sensitivity of 1 to Zn2+ was examined in living cells by
using confocal microscopy. Fluorescence images were
recorded with excitation at 408 nm by an diode laser, Spinhole
aperture, 100% gain of detector, and an oil objective with 60Â
magnification and 1.40 NA. The qualitatively in vitro results
are exhibited in Fig. 4. After MCF-7 cells were incubated with
10À3 mmol 1 and 1 mL PBS for 30 min at 37 1C, no obvious
fluorescence can be imaged (Fig. 4a). At the same experimental
conditions, 10 min after 2 Â 10À2 mmol of Zn2+ was intro-
duced into the same MCF-7 cells, the strong fluorescence was
imaged (Fig. 4b), which resulted from the reaction of 1 and
Zn2+. The bright field transmission images of these MCF-7
cells in Fig. 4c is exactly the same as the fluorescence image in
Fig. 4b, confirming an intracellular fluorescence imaged.
In summary, a novel 1,8-naphthyridine-based fluorescent
Zn2+-chemodosimeter 1 has been designed and synthesized,
and it displays high selectivity and sensitivity for Zn2+ in the
6 (a) E. E. Fenlon, T. J. Murray, M. H. Baloga and
S. C. Zimmerman, J. Org. Chem., 1993, 58, 6625;
(b) G. R. Newkome, K. J. Theriot, V. K. Majestic, P. A. Spruell
and G. R. Baker, J. Org. Chem., 1990, 55, 2839; (c) A. Kobori,
S. Horie, H. Suda, I. Saito and K. Nakatani, J. Am. Chem. Soc.,
2004, 126, 557; (d) J. R. Quinn, S. C. Zimmerman, J. E. Del Bene
and I. Shavitt, J. Am. Chem. Soc., 2007, 129, 934; (e) C. He and
S. J. Lippard, Inorg. Chem., 2000, 39, 5225; (f) J. L. Katz,
B. J. Geller and P. D. Foster, Chem. Commun., 2007, 1026;
(g) H. Satake, S. Nishizawa and N. Teramae, Anal. Sci., 2006,
22, 195.
presence of competing metal ions. In the presence of Zn2+
,
7 M.-M. Yu, Z.-X. Li, L.-H. Wei, D.-H. Wei and M.-S. Tang, Org.
Lett., 2008, 10, 5115.
significant fluorescence enhancement is achieved. The reason is
probably that the acetamide group of 1 was hydrolyzed to
amino group and the rotation of acyclic CQN is frozen. The
sensitivity of 1 to Zn2+ was demonstrated in living cells,
indicating its potential application for the intracellular
8 (a) J.-S. Wu, J.-H. Zhou, P.-F. Wang, X.-H. Zhang and S.-K. Wu,
Org. Lett., 2005, 7, 2133; (b) W.-M. Liu, L.-W. Xu, R.-L. Sheng,
P.-F. Wang, H.-P. Li and S.-K. Wu, Org. Lett., 2007, 9, 3829.
9 Z.-X. Li, W.-F. Fu, M.-M. Yu, X.-J. Zhao and Y. Chen, Dyes
Pigm., 2007, 75, 516.
imaging of Zn2+
.
10 Crystal data for 1: C36H32N8O5, M = 656.70, orthorhombic, space
ꢀ
group P1, a = 7.5496(15) A, b = 13.657(3) A, c = 30.427(6) A,
We thank the NSFC (50903075, 60978034 and 50873093)
for financial support and Professor Chenjie Fang at Capital
Medical University for her kind help.
a = 901, b = 901, g = 901, V = 3137.1(11) A3, Z = 4, Dc
=
1.390 Mg mÀ3, F000 = 1376, MoKa radiation, l = 0.71073 A,
T = 273(2) K, 2ymax = 55.64. 32 427 reflections measured, 13 839
unique (Rint = 0.0456). The structures were solved by direct
methods and refined by a full-matrix least-squares technique on
Notes and references
F2 using the SHELXH97 program. Final GooF = 1.195, R1
0.0937, wR2 = 0.1995, R indices based on 8981 reflections and 912
=
1 (a) B. Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3;
(b) K. Komatsu, Y. Urano, H. Kojima and T. Nagano, J. Am.
Chem. Soc., 2007, 129, 13447; (c) X. Peng, J. Du, J. Fan, J. Wang
Y. Wu, J. Zhao, S. Sun and T. Xu, J. Am. Chem. Soc., 2007, 129,
refined parameters, with I 4 2s(I). CCDC 783331.
11 ESI data of the final compound from reaction of 1 and ZnCl2: m/z)
514.5 [M], 279 [M+ + 1 À ZnCl2 À ZnCl À CH2CO].
c
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 7169–7171 7171