Synthesis of highly substituted pyridines
65
2.2d 2-Amino-6-(furan-2-ylmethylsulfanyl)-4-(4- 132⋅2, 135⋅0, 139⋅5, 153⋅9, 156⋅6, 159⋅5, 165⋅8;
methoxy-phenyl)-pyridine-3,5-dicarbonitrile (P15): Mass (ESI): m/z 425 (M + Na) ; HRMS (ESI): Anal.
+
Pale yellow solid; Melting point 217–218°C; IR Calcd. for C H N O NaS: 425⋅1048; Found:
22 18
4
2
(KBr): 3459, 3324, 3209, 2363, 2214, 1616, 1541, 425⋅1037.
1506, 1459, 1247, 1170, 1016, 826, 743 cm ; H
–1
1
NMR (DMSO-d , 200 MHz) δ 3⋅88 (s, 3H), 4⋅51 (s,
6
3. Results and discussion
2H), 6⋅29 (t, J = 2⋅2, 2⋅9 Hz, 1H), 6⋅44 (d,
J = 2⋅9 Hz, 1H), 7⋅04 (d, J = 8⋅8 Hz, 2H), 7⋅37–7⋅62
(m, 5H); C NMR (DMSO-d , 75 MHz) δ 25⋅9,
6
In order to understand the relationship between
structure and reactivity, various forms of magnesium
oxide crystals CM-MgO (commercial MgO, SSA:
13
55⋅2, 85⋅9, 93⋅4, 108⋅9, 110⋅7, 113⋅6, 114⋅0, 115⋅3,
125⋅7, 130⋅1, 142⋅7, 149⋅8, 158⋅1, 159⋅6, 160⋅7,
2
30 m /g), NA–MgO (NanoActive MgO, convention-
+
2
165⋅4; Mass (ESI): m/z 369 (M + Na) ; HRMS
ally prepared MgO, SSA: 250 m /g), NAP–MgO
(ESI): Anal. Calcd. for C H N ONaS: 369⋅0786;
19 14
4
(NanoActive Plus MgO, aerogel prepared MgO,
2
Found: 369⋅0776.
SSA: 590 m /g) were initially evaluated for the
three-component condensation of benzaldehyde,
malononitrile, and thiophenol at reflux temperature
of ethanol. All these MgO crystals catalysed the
reaction, but best result was obtained with NAP–
MgO (table 1).
2.2e 2-Amino-4-(2,6-dichloro-phenyl)-6-para-tolyl-
sulfanyl-1,4-dihydro-pyridine-3,5-dicarbonitrile
(DP3): Colourless solid; Melting point 313–
315°C; IR (KBr): 3443, 3353, 2204, 2168, 1643,
–1
1
1487, 1246, 1035, 811, 772 cm ; H NMR (DMSO-
In order to investigate the scope of the above op-
timized protocol, a variety of structurally different
aldehydes with different thiols and malononitrile
were employed for the three component condensa-
tion and the results are depicted in tables 2 and 3. As
summarized in table 2, for the synthesis of substi-
tuted pyridines, it was found that aromatic as well as
heterocyclic aldehydes underwent this reaction to
d , 200 MHz) δ 2⋅38 (s, 3H), 5⋅4 (s, br, 2H), 5⋅65 (s,
6
13
1H), 7⋅17–7⋅51 (m, 7H), 8⋅57 (s, br, 1H); C NMR
(DMSO-d , 75 MHz) δ 20⋅6, 34⋅8, 52⋅1, 86⋅9, 117⋅4,
6
119⋅7, 125⋅5, 128⋅6, 130⋅1, 130⋅4, 131⋅4, 135⋅1,
+
138⋅8, 143⋅4, 151⋅4; Mass (ESI): m/z 435 (M + Na) ;
HRMS (ESI): Anal. Calcd. for C H N NaSCl :
20 14
4
2
435⋅0213; Found: 435⋅0226.
2.2f 2-Amino-4-(2-chloro-6-fluoro-phenyl)-6-para-
tolylsulfanyl-1,4-dihydro-pyridine-3,5-dicarbonitrile
(DP6): Yellow solid; Melting point 277–279°C;
IR (KBr) ν 3465, 3362, 2205, 2169, 1643, 1599,
Table 1. One-pot synthesis of 2-amino-4-phenyl-6-
phenylsulfanyl-pyridine-3,5-dicarbonitrile P1 with vari-
a
ous catalysts .
–1
1
b
1488, 1449, 1243, 892, 778 cm ; H NMR (DMSO-
Entry
Catalyst
Time (h)
Yield (%)
d , 200 MHz) δ 2⋅36 (s, 3H), 5⋅22 (d, J = 2⋅1 Hz,
6
1H), 5⋅4 (s, br, 2H), 6⋅98–7⋅53 (m, 7H), 8⋅65 (s, br,
1H); C NMR (DMSO-d , 75 MHz) δ 20⋅6, 35⋅5,
6
c
c
1
2
3
4
5
NAP–MgO
NA–MgO
CM–MgO
Sil–NAP–MgO
None
2, 2
64, 58
4
9
59
55
50
–
13
52⋅4, 87⋅4, 115⋅2, 115⋅5, 117⋅6, 119⋅9, 126⋅1, 130⋅4,
130⋅8, 138⋅5, 142⋅9, 151⋅1; Mass (ESI): m/z 419
(M + Na) ; HRMS (ESI): Anal. Calcd. for C H
4
12
+
a
20 14
Reaction
conditions:
Benzaldehyde
(1⋅0 mmol),
N FNaSCl: 419⋅0509; Found: 419⋅0518.
4
malononitrile (2⋅1 mmol), thiophenol (1⋅1 mmol), catalyst
(0⋅1 g), ethanol (5 mL) at reflux temperature
Isolated yield; Fourth cycle
b
c
2.2g 2-Amino-4-(2,6-dimethoxy-phenyl)-6-para-
tolylsulfanyl-pyridine-3,5-dicarbonitrile
(P17):
Colourless solid; Melting point 202–203°C; IR
(KBr) ν 3440, 3343, 3220, 2212, 2180, 1630, 1593,
–1
1
1541, 1465, 1253, 1106, 1021, 768 cm ; H NMR
(DMSO-d , 200 MHz) δ 2⋅42 (s, 3H), 3⋅85 (s, 6H),
6
6⋅62 (s, br, 2H), 6⋅7 (d, J = 8⋅8 Hz, 2H), 7⋅24 (d,
J = 8⋅1 Hz, 2H), 7⋅45 (d, J = 8⋅1 Hz, 2H), 7⋅66 (s,
13
1H); C NMR (DMSO-d , 75 MHz) δ 20⋅8, 56⋅0,
6
88⋅8, 94⋅8, 104⋅5, 110⋅8, 114⋅7, 114⋅9, 123⋅2, 130⋅0,
Scheme 1. One-pot synthesis of substituted pyridines
catalysed by NAP–MgO.