Page 5 of 5
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
As the luminescent characteristics of the molecules closely
depend on their conformations as well as the intermolecular
arrangements, the highly changeable emission features as
observed of G3 molecules in the solid state (Fig. 7c) are not
unexpected. For example, their emission features depend on
the solvents used for deposition. As shown in Fig. 7c, the solid
sample from THF fluoresces at distinctly longer wavelengths
(relative to other solvents). The variable solid state emission
profiles of G3 can be (tentatively) ascribed to the diverse
1663-1665.
DOI: 10.1039/C9OB00958B
4. J. He, M. Zeller, A. D. Hunter and Z. Xu, CrystEngComm, 2015, 17, 9254-9263.
5. J. Cui, Y.-L. Wong, M. Zeller, A. D. Hunter and Z. Xu, Angew. Chem., Int. Ed., 2014,
53, 14438-14442.
6. C. R. Woods, M. Benaglia, S. Toyota, K. Hardcastle and J. S. Siegel, Angew. Chem. Int.
Ed., 2001, 40, 749-751.
7. R. Nandy, M. Subramoni, B. Varghese and S. Sankararaman, J. Org. Chem., 2007, 72,
938-944.
8. V. Narayanan, S. Sankararaman and H. Hopf, Eur. J. Org. Chem., 2005, 2740-2746.
9. J. A. Marsden, M. J. O'Connor and M. M. Haley, Org. Lett., 2004, 6, 2385-2388.
10. J. D. Bradshaw, L. Guo, C. A. Tessier and W. J. Youngs, Organometallics, 1996, 15,
2582-2584.
packing motifs engendered by its complex branched shape. On 11. M. Laskoski, W. Steffen, J. G. M. Morton, M. D. Smith and U. H. F. Bunz, J.
Organomet. Chem., 2003, 673, 25-39.
12. W. Yang, G. Longhi, S. Abbate, A. Lucotti, M. Tommasini, C. Villani, V. J. Catalano, A.
the other hand, the absence of red shift in the solution spectra
of G3 (relative to the much smaller G2) runs counter to the
general trend of higher-generation dendrimers to absorb and
emit at longer wavelengths42-44 (albeit to a lesser degree for
meta-conjugated systems45, 46). We suspect that the diacetylene
bridge in G2 offers an efficient push-pull pathway between the
sulfur and the carboxyl groups to facilitate π-electron
delocalization, while such a push-pull effect becomes weaker in
the longer, zigzag path offered by G3 (see Fig. S4). Further
studies on the excitation dynamics of Sierpinski molecules are
needed for elucidating the unexpected absence of red shift
observed in the solution spectra of G3, and for uncovering other
potentially interesting photophysical properties.
O. Lykhin, S. A. Varganov and W. A. Chalifoux, J. Am. Chem. Soc., 2017, 139, 13102-
13109.
13. E. Buhleier, W. Wehner and F. Vögtle, Synthesis, 1978, 155-158.
14. D. A. Tomalia, A. M. Naylor and W. A. Goddard, III, Angew. Chem., 1990, 102, 119-
157.
15. J. S. Moore, Acc. Chem. Res., 1997, 30, 402-413.
16. A. W. Bosman, H. M. Janssen and E. W. Meijer, Chem. Rev., 1999, 99, 1665-1688.
17. C. C. Lee, J. A. MacKay, J. M. J. Fréchet and F. C. Szoka, Nat. Biotechnol., 2005, 23,
1517-1526.
18. M. Gingras, J.-M. Raimundo and Y. M. Chabre, Angew. Chem. Int. Ed., 2007, 46,
1010-1017.
19. S.-H. Hwang, C. D. Shreiner, C. N. Moorefield and G. R. Newkome, New J. Chem.,
2007, 31, 1192-1217.
20. M. Kozaki, S. Morita, S. Suzuki and K. Okada, J. Org. Chem., 2012, 77, 9447-9457.
21. G. R. Newkome, P. Wang, C. N. Moorefield, T. J. Cho, P. P. Mohapatra, S. Li, S.-H.
Hwang, O. Lukoyanova, L. Echegoyen, J. A. Palagallo, V. Iancu and S.-W. Hla, Science,
2006, 312, 1782-1785.
The complex branched shape of G3 may also account for its
enhanced sensitivity to nitrobenzene (e.g., by allowing for
easier guest penetration into the solid). As shown in Fig. 7d-f,
the fluorescence of the G3 thin film (drop-cast onto filter paper
from a THF solution: 0.3 mg/mL; 1.0 µL) was largely quenched
after being suspended over nitrobenzene in a capped vial (e.g.,
at 80 °C for 5 minutes); by comparison, a G2 thin film (similarly
cast from THF: 0.3 mg/mL; 1.0 µL) shows lesser fluorescence
quenching, as is both visually and spectroscopically observed.
22. P. W. K. Rothemund, N. Papadakis and E. Winfree, PLoS Biol., 2004, 2, 2041-2053.
23. J. Shang, Y. Wang, M. Chen, J. Dai, X. Zhou, J. Kuttner, G. Hilt, X. Shao, J. M. Gottfried
and K. Wu, Nat. Chem., 2015, 7, 389-393.
24. D. Nieckarz and P. Szabelski, Chem. Commun., 2016, 52, 11642-11645.
25. X. Zhang, N. Li, G.-C. Gu, H. Wang, D. Nieckarz, P. Szabelski, Y. He, Y. Wang, C. Xie,
Z.-Y. Shen, J.-T. Lu, H. Tang, L.-M. Peng, S.-M. Hou, K. Wu and Y.-F. Wang, ACS Nano,
2015, 9, 11909-11915.
26. G. Gu, N. Li, L. Liu, X. Zhang, Q. Wu, D. Nieckarz, P. Szabelski, L. Peng, B. K. Teo, S.
Hou and Y. Wang, RSC Adv., 2016, 6, 66548-66552.
27. X. Zhang, N. Li, L. Liu, G. Gu, C. Li, H. Tang, L. Peng, S. Hou and Y. Wang, Chem.
Commun., 2016, 52, 10578-10581.
28. N. Li, G. Gu, X. Zhang, D. Song, Y. Zhang, B. K. Teo, L.-m. Peng, S. Hou and Y. Wang,
Chem. Commun., 2017, 53, 3469-3472.
29. C. Yang, Y.-L. Wong, R. Xiao, M. Zeller, A. D. Hunter, S.-M. Yiu and Z. Xu,
ChemistrySelect, 2016, 1, 4075-4081.
Conflicts of interest
There are no conflicts to declare.
30. Z. Luo, N. Zhu and D. Zhao, Chem. - Eur. J., 2016, 22, 11028-11034.
31. D. Zhao and J. S. Moore, Chem. Commun., 2003, 807-818.
32. Y. Jin, Q. Wang, P. Taynton and W. Zhang, Acc. Chem. Res., 2014, 47, 1575-1586.
33. R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874-922.
34. R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084-5121.
35. N. M. Jenny, M. Mayor and T. R. Eaton, Eur. J. Org. Chem., 2011, 2011, 4965-4983.
36. A. M. Thomas, A. Sujatha and G. Anilkumar, RSC Adv., 2014, 4, 21688-21698.
37. D. B. Kimball and M. M. Haley, Angew. Chem., Int. Ed., 2002, 41, 3338-3351.
38. Y. Zhang, D. Cao, W. Liu, H. Hu, X. Zhang and C. Liu, Curr. Org. Chem., 2015, 19, 151-
178.
39. Z. Wu and J. S. Moore, Tetrahedron Lett., 1994, 35, 5539-5542.
40. B. T. Holmes, W. T. Pennington and T. W. Hanks, Synth. Commun., 2003, 33, 2447-
2461.
41. Z. Xu, M. Kahr, K. L. Walker, C. L. Wilkins and J. S. Moore, J. Am. Chem. Soc., 1994,
116, 4537-4550.
Acknowledgements
This work was supported by an SRG grant of City University of
Hong Kong (Project 7004820), the National Natural Science
Foundation of China (21871061), Local Innovative and Research
Teams Project of Guangdong Pearl River Talents Program and
Science
and
Technology
Program
of
Guangzhou (201807010026). W.-Y.W. thanks the financial
support from Hong Kong Research Grants Council (HKBU
12302114). M.Z. thanks the United States National Science
Foundation (Grant CHE 0087210), Ohio Board of Regents Grant
CAP-491, and Youngstown State University for funding for the
single crystal diffractometer.
42. J. S. Melinger, Y. Pan, V. D. Kleiman, Z. Peng, B. L. Davis, D. McMorrow and M. Lu, J.
Am. Chem. Soc., 2002, 124, 12002-12012.
43. Z. Peng, Y. Pan, B. Xu and J. Zhang, J. Am. Chem. Soc., 2000, 122, 6619-6623.
44. M. Lu, Y. Pan and Z. Peng, Tetrahedron Lett., 2002, 43, 7903-7906.
45. K. M. Gaab, A. L. Thompson, J. Xu, T. J. Martinez and C. J. Bardeen, J. Am. Chem.
Soc., 2003, 125, 9288-9289.
46. R. Kopelman, M. Shortreed, Z.-Y. Shi, W. Tan, Z. Xu, J. S. Moore, A. Bar-Haim and J.
Klafter, Phys. Rev. Lett., 1997, 78, 1239-1242.
Notes and references
1. Y.-Q. Sun, J. He, Z. Xu, G. Huang, X.-P. Zhou, M. Zeller and A. D. Hunter, Chem.
Commun., 2007, 4779-4781.
2. Z. Xu, Y.-Q. Sun, J. He, M. Zeller and A. D. Hunter, in The concept and use of a class
of branchy molecules with centripetal self-similarity, Nova Science Publishers, Inc.,
Hauppauge, NY 2008.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins