Organic Letters
Letter
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectroscopic and analyt-
ical data for all new compounds (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
‡L.E.H. and M.R.H. contributed equally.
Notes
The authors declare no competing financial interest.
Figure 1. Proposed mechanism.
ACKNOWLEDGMENTS
■
This work was supported by NIH NIGMS (R01GM100212),
the National Science Foundation (GRF DGE-1321846 to
M.R.H.), DoEd (GAANN PA200A120070 to L.E.H.), and The
University of Tokyo (GPLLI Fellowship to K.D.). We thank
Materia for providing the Hoveyda−Grubbs II catalyst.
To demonstrate the utility of this method further, we
coupled the formation of a benzylzinc reagent to an
intramolecular conjugate addition (Scheme 5).18−20 2-Pyridyl
Scheme 5. Intramolecular 1,4-Addition
REFERENCES
■
(1) (a) Modern Organonickel Chemistry, 1st ed.; Tamaru, Y., Ed.;
Wiley-VCH: Hoboken, NJ, 2005. (b) Tasker, S. Z.; Standley, E. A.;
Jamison, T. F. Nature 2014, 509, 299.
(2) For lead references, see: (a) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc.
Chem. Res. 2015, 48, 886. (b) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R.
Acc. Chem. Res. 2015, 48, 2344. (c) Ackerman, L. K. G.; Anka-Lufford,
L. L.; Naodovic, M.; Weix, D. J. Chem. Sci. 2015, 6, 1115.
(d) Tollefson, E. J.; Erickson, L. W.; Jarvo, E. R. J. Am. Chem. Soc.
2015, 137, 9760. (e) Konev, M. O.; Hanna, L. E.; Jarvo, E. R. Angew.
Chem., Int. Ed. 2016, 55, 6730. (f) Zarate, C.; Manzano, R.; Martin, R.
J. Am. Chem. Soc. 2015, 137, 6754. For representative reduction and
metalation of allylic ethers and esters, see: (g) Mandai, T.; Matsumoto,
T.; Kawada, M.; Tsuji, J. J. Org. Chem. 1992, 57, 1326. (h) Zhou, Q.;
Srinivas, H. D.; Zhang, S.; Watson, M. P. J. Am. Chem. Soc. 2016, 138,
11989.
(3) For a review and lead reference for deoxygenation strategies, see:
(a) Herrmann, J. M.; Konig, B. Eur. J. Org. Chem. 2013, 2013, 7017.
(b) Dai, X.-J.; Li, C.-J. J. Am. Chem. Soc. 2016, 138, 5433.
(4) For Ni-catalyzed hydrogenolysis of C(sp3)−O, see: (a) Krafft, M.
E.; Crooks, W. J. J. Org. Chem. 1988, 53, 432. (b) Kong, X.; Zhu, Y.;
Zheng, H.; Li, X.; Zhu, Y.; Li, Y.-W. ACS Catal. 2015, 5, 5914. (c)
Reference 1a.
(5) (a) Sergeev, A. G.; Hartwig, J. F. Science 2011, 332, 439.
(b) Sergeev, A. G.; Webb, J. D.; Hartwig, J. F. J. Am. Chem. Soc. 2012,
134, 20226.
(6) For mechanistic studies of nickel-catalyzed hydrogenolysis of
C(sp2)-OMe, see: (a) Cornella, J.; Gomez-Bengoa, E.; Martin, R. J.
Am. Chem. Soc. 2013, 135, 1997. (b) Xu, L.; Chung, L. W.; Wu, Y.-D.
ACS Catal. 2016, 6, 483.
(7) Knochel, P.; Leuser, H.; Gong, L.-Z.; Perrone, S.; Kneisel, F. F.
Polyfunctional Zinc Organometallics for Organic Synthesis. In
Handbook of Functionalized Organometallics: Applications in Synthesis;
Knochel, P., Ed.; Wiley: Weinheim, 2005; p 251.
carbinol 24 bearing a pendant α,β-unsaturated ester underwent
smooth cyclization to produce the desired cyclopentane 25 in
excellent yield and 2.5:1 dr. Similarly, cyclization of 26 afforded
cyclohexane 27 in 2.5:1 dr. Efforts to produce 3- or 7-
membered rings were unsuccessful and resulted predominantly
in hydrogenolysis.
In summary, we have developed nickel-catalyzed hydro-
genolysis of a range of 2-(hydroxymethyl)pyridines. The
reaction proceeds in high yield and with straightforward
incorporation of deuterium from deuteromethanol. The
proposed mechanism involves formation of a benzylzinc
reagent. The reaction has been applied to an intramolecular
1,4-addition for formation of pyridyl-substituted cyclopentanes
and cyclohexanes. Further development of the reactivity of the
putative organozinc intermediates and elucidation of mecha-
nistic details are underway.
(8) Yu, D.-G.; Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-
Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638.
C
Org. Lett. XXXX, XXX, XXX−XXX