Alkenenitrile Transmissive Olefination
Pd(OAc)2 and Ag2CO3 affords dienenitrile 5 with full con-
trol over the olefin stereochemistry (Scheme 3). Conven-
tional iBu2AlH reduction of nitrile 5,[21] hydrolysis, and al-
dehyde reduction afforded an 8:1 ratio of E/Z enal dia-
stereomers that were reduced to target alcohol (7Z,7ЈE)-6a
and diastereomer (7E,7ЈE)-6b. Neither alcohol (7Z,7ЈE)-6a
nor C7–C8 E-diastereomer (7E,7ЈE)-6b exhibit spectro-
Experimental Section
General Transmissive Olefination Procedure: An ethereal solution
of the Grignard reagent (3.5 equiv.) was slowly added to a stirred
0 °C, THF solution of 1. After 50 min, the mixture was quenched
with 0.1 m HCl solution, and then the resulting mixture was stirred
vigorously for 5 min. The crude product was extracted with diethyl
ether, dried (MgSO4), concentrated, and purified by radial
scopic data matching the reported spectral listing of the chromatography to afford analytically pure material.
natural product. Unfortunately, samples and copies of the
Supporting Information (see footnote on the first page of this arti-
spectroscopic data exhibited by the natural lignin are not
available to resolve the ambiguous HMBC and NOE data
that are inconsistent with the skipped diene structure pro-
posed for morinol I.[22] Although the precise structure of
morinol I is elusive, the five-step synthesis of the putative
structure of morinol I demonstrates the ability of the trans-
missive olefination strategy to rapidly assemble this type of
molecular scaffold.
cle): Experimental procedures, spectroscopic and analytical data,
and copies of the NMR spectra for all new compounds.
Acknowledgments
Financial support from the National Institutes of Health
(2R15AI051352-03) and in part from the National Science Founda-
tion CHE (0808996; NMR: 0614785, X-ray: 024872, HRMS:
0421252) is gratefully acknowledged.
[1] J. Yang in Six-Membered Transition States in Organic Synthe-
sis, Wiley, Hoboken, N. J., 2008.
[2] M. Braun in Modern Aldol Reactions (Ed.: R. Mahrwald),
Wiley-VCH, Weinheim, Germany. 2004, vol. 1, pp. 1–61.
[3] For related reactions, see: a) J. K. Belardi, G. C. Micalizio, J.
Am. Chem. Soc. 2008, 130, 16870–16872; b) G. Bartoli, M. C.
Bellucci, M. Bosco, R. Dalpozzo, A. De Nino, L. Sambri, A.
Tagarelli, Eur. J. Org. Chem. 2000, 99–104; c) R. Dalpozzo, A.
De Nino, A. Tagarelli, G. Bartolli, M. C. Bellucci, M. Bosco,
L. Sambri, J. Org. Chem. 1998, 63, 9559–9560.
[4] For related strategies built on prior hydroxyl activation, see: a)
S. K. Mandal, M. Paira, S. C. Roy, J. Org. Chem. 2008, 73,
3823–3827; b) P. V. Ramachandran, T. E. Gurghardt, M. V. R.
Reddy, Tetrahedron Lett. 2005, 46, 2121–2124; c) B. Das, J.
Banerjee, G. Mahender, A. Majhi, Org. Lett. 2004, 6, 3349–
3352; d) S. Hbaïeb, T. Ben Ayed, H. Amri, Synth. Commun.
1997, 27, 2825–2832; e) D. Basavaiah, S. Pandiaraju, K. Pad-
maja, Synlett 1996, 393–395; f) D. Basavaiah, S. Pandiaraju,
Tetrahedron 1996, 52, 2261–2268.
[5] a) B. Mauzé, L. Miginiac, Synth. Commun. 1992, 22, 2229–
2235; b) H. Takyanagi, Y. Kitano, Y. Morinaka, Tetrahedron
Lett. 1990, 31, 3317–3320; c) I. Matsuda, H. Okada, Y. Izumi,
Bull. Chem. Soc. Jpn. 1983, 56, 528–532.
[6] A. J. Fatiadi in The Chemistry of Functional Groups, Sup-
plement C (Eds.: S. Patai, Z. Rappoport), Wiley, New York,
N.Y. 1983, ch. 26.
Scheme 3. Transmissive olefination route to morinol I.
[7] F. F. Fleming, Nat. Prod. Rep. 1999, 16, 597–606.
[8] F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook,
J. Med. Chem. 2010, 53, 7902–7917.
[9] a) D. Josien-Lefebvre, C. Le Drian, Helv. Chim. Acta 2007, 90,
19–30; b) C. V. Krishna, S. Maitra, R. V. Dev, K. Mukkanti, J.
Iqbal, Tetrahedron Lett. 2006, 47, 6103–6106; c) T. Nagamitsu,
D. Takano, T. Fukuda, K. Otoguro, I. Kuwajima, Y. Harigaya,
S. Omura, Org. Lett. 2004, 6, 1865–1867; d) A. B. III Smith,
G. K. Friestad, J. Barbosa, E. Bertounesque, J. J.-W. Duan,
K. G. Hull, M. Iwashima, Y. Qiu, P. G. Spoors, B. A. Salvatore,
J. Am. Chem. Soc. 1999, 121, 10478–10486.
[10] B. A. Roden, B. C. Shook in e-EROS Encyclopedia of Reagents
for Organic Synthesis: Magnesium Oxide, Wiley, 2001.
[11] For general reviews to Baylis–Hillman reactions, see: a) D. Ba-
savaiah, B. Reddy, B. Sekhara, S. Satpal, Chem. Rev. 2010, 110,
5447–5674; b) D. Basavaiah, K. V. Rao, R. J. Reddy, Chem.
Soc. Rev. 2007, 36, 1581–1588; c) D. Basavaiah, A. J. Rao, T.
Satyanarayana, Chem. Rev. 2003, 103, 811–891; for ultrasound-
assisted reactions, see: d) F. Coelho, W. P. Almeida, D.
Veronese, C. R. Mateus, E. C. Silva Lopes, R. C. Rossi, G. P. C.
Silveira, C. H. Pavam, Tetrahedron 2002, 58, 7437–7447.
Conclusions
The transmissive olefination of hydroxy alkenenitriles ef-
ficiently and stereoselectively assembles Z-alkenenitriles
from three readily available components: an aldehyde,
acrylonitrile, and a Grignard reagent. The strategy directly
employs Baylis–Hillman alcohols without prior hydroxyl
activation by harnessing a unique elimination of magne-
sium oxide. Simply adding excess Grignard reagent to an
αЈ-hydroxyalkenenitrile triggers a transmissive olefination
to efficiently provide a diverse array of Z-alkenenitriles. The
versatility of the transmissive olefination is illustrated in the
rapid synthesis of the structure proposed for the lignan mo-
rinol I.
Eur. J. Org. Chem. 2011, 6843–6846
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6845