Fullerene Epoxide
SCHEME 1. Preparation of Thiirane 3 and
Tetrahydrothiazolidin-2-one 4
functionalization. A major problem hindering the chemistry of
fullerene epoxide is the time-consuming HPLC separation of
the mixture of epoxides C60(O)n resulting from the nonselective
epoxidation reactions. In addition, slow degradation of the
fullerene epoxides adds more difficulty for their functionaliza-
tion. Nevertheless, Tajima et al. succeeded in converting C60-
(O) into 1,3-dioxolane derivatives.3 The same group also
reported the Lewis acid-assisted nucleophilic substitution of C60-
(O) to form 1,4-bisadduct (para-addition).4 Heating a mixture
of C60O1-3 and C60 under various conditions produces both
C
120O and C120O2.5
We have reported the reaction between tert-butylperoxo
radicals and C60 to give the epoxide-containing derivative 1.6
Presence of the tert-butylperoxo groups results in high solubility
and easy purification by flash chromatography. Further study
indicates that compound 1 also shows good chemoselectivity
under mild conditions. The epoxide moiety could be converted
to vicinal diol and halohydrins in good yields by Lewis acids.7
The tert-butylperoxo groups remain unchanged in these reac-
tions, and greatly facilitate product purification and characteriza-
tion. Here we report the transformation of the epoxide moiety
into thiirane and various five-membered heterocyclic derivatives.
Results and Discussion
Reactions of Aryl Isothiocyanates with 1. Sulfur-containing
fullerene derivatives have attracted much attention due to their
interesting photophysical properties.8 Various sulfur-containing
fullerene derivatives have been prepared.9,10 The simplest sulfur-
containing fullerene derivative is the thiirane derivative C60S,
analogous to the well-known fullerene epoxide C60O. It has been
the subject of theoretical calculations,11 which suggested that a
[6,6]-closed structure might be stable relative to dissociation to
C
60 and atomic sulfur or to 2C60 and S2. Heymann et al. observed
C60S- and C60S+ ions in the gas phase by analyzing mixtures
of C60 and elemental sulfur by LDI-TOF.12 But attempted
syntheses were not successful. In an effort to prepare the
fullerene thiirane derivatives, we first tried the reaction between
1 and isothiocyanates.
(2) (a) Raghavachari, K. Chem. Phys. Lett. 1992, 195, 221. (b) Batirev,
I. G.; Lee, K. H.; Lee, W. R.; Lee, H. M.; Leiro, J. A. Chem. Phys. Lett.
1996, 262, 247. (c) Tian, W. Q.; Feng, J. K.; Ge, M. F.; Ren, A. M.; Li, Z.
R.; Huang, X. R.; Sun, C. C. Chem. J. Chin. UniV. 1998, 19, 446. (d)
Manoharan, M. J. Org. Chem. 2000, 65, 1093. (e) Feng, J.; Ren, A.; Tian,
W.; Ge, M.; Li, Z.; Sun, C.; Zheng, X.; Zerner, M. C. Int. J. Quantum
Chem. 2000, 76, 23.
(3) Shigemitsu, Y.; Kaneko, M.; Tajima, Y.; Takeuchi, K. Chem. Lett.
2004, 33, 1604.
(4) Tajima, Y.; Hara, T.; Honma, T.; Matsumoto, S.; Takeuchi, K. Org.
Lett. 2006, 8, 3203.
Isothiocyanates are common sulfurating reagents in classical
organic chemistry.13 They react with epoxides to form sulfur
heterocycles under various conditions. The epoxide moiety of
1 readily reacts with aryl isothiocyanate PhNCS in the presence
of TMSOTf to give the epoxide-opened derivative 2 in good
yields (Scheme 1). The reaction and all the purification
procedure were carried out in the dark to avoid photoinduced
decomposition. Other Lewis acids such as BF3 were also tested
but gave lower yields due to formation of other products.
Compound 2 is stable for several hours. The 13C NMR spectra
of both 2a and 2b were quite complex, indicating the presence
of at least two compounds. Possible structures of 2 are shown
in Scheme 1. Upon storage in the dark for several days at r.t.,
(5) (a) Smith, A. B., III; Tokuyama, H.; Strongin, R. M.; Furst, G. T.;
Romanow, W. J.; Chait, B. T.; Mirza, U. A.; Haller, I. J. Am. Chem. Soc.
1995, 117, 9359. (b) Deng, J. P.; Mou, C. Y.; Han, C. C. Chem. Phys. Lett.
1996, 256, 96.
(6) (a) Gan, L. B.; Huang, S. H.; Zhang, X.; Zhang, A. X.; Cheng, B.
C.; Cheng, H.; Li, X. L.; Shang, G. J. Am. Chem. Soc. 2002, 124, 13384.-
(b) Huang, S. H.; Xiao, Z.; Wang, F. D.; Gan, L. B.; Zhang, X.; Hu, X. Q.;
Zhang, S. W.; Lu, M. J.; Pan, J. Q.; Xu, L. J. Org. Chem. 2004, 69 2442.
(7) (a) Huang, S. H.; Xiao, Z.; Wang, F. D.; Zhou, J.; Yuan, G.; Zhang,
S. W.; Chen, Z. F.; Thiel, W.; Schleyer, P. von R.; Zhang, X.; Hu, X. Q.;
Chen, B. C.; Gan. L. B. Chem. Eur. J. 2005, 11, 5449. (b) Hu, X. Q.;
Jiang, Z. P.; Jia, Z. S.; Huang, S. H.; Yang, X. B.; Li, Y. L.; Gan, L. B.;
Zhang, S. W.; Zhu, D. B. Chem. Eur. J. 2007, 13, 1129. (c) Jia, Z. S.;
Zhang, X.; Zhang, G. H.; Huang, S. H.; Fang, H.; Hu, X. Q.; Li, Y. L.;
Gan, L. B.; Zhang, S. W.; Zhu, D. B. Chem. Asian J. 2007, 2, 290.
(8) Mart´ın, N.; Sa´nchez, L.; Illescas, B.; Pe´rez, I. Chem. ReV. 1998, 98,
2527 and references therein.
(9) (a) Eguchi, S.; Ohno, M.; Kojima, S.; Koide, N.; Yashiro, A.;
Shirakawa, Y.; Ishida, H. Fullerene Sci. Technol. 1996, 4, 303. (b)
Yamazaki, T.; Murata, Y.; Komatsu, K.; Furukawa, K.; Morita, M.;
Maruyama, N.; Yamao, T.; Fujita, S. Org. Lett. 2004, 6, 4865. (c)
Roubelakis, M. M.; Vougioukalakis, G. C.; Orfanopoulos, M. J. Org. Chem.
2007, 72, 6526. (d) Sa´nchez, L.; Herranz, M. AÄ .; Mart´ın, N. J. Mater. Chem.
2005, 15, 1409. (e) Wang, G. W.; Li, J. X.; Li, Y. J.; Liu, Y. C. J. Org.
Chem. 2006, 71, 680. (f) Ioannou, E.; Hirsch, A.; Elemes, Y. Tetrahedron
2007, 63, 7070.
(10) (a) Takaguchi, Y.; Katayose, Y.; Yanagimoto, Y.; Motoyoshiya,
J.; Aoyama, H.; Wakahara, T.; Maeda, Y.; Akasaka, T. Chem. Lett. 2003,
32, 1124. (b) Ohno, M.; Kojima, S.; Shirakawa, Y.; Eguchi, S. Tetrahedron
Lett. 1995, 36, 6899. (c) Ohno, M.; Kojima, S.; Eguchi, S. J. Chem. Soc.,
Chem. Commun. 1995, 565. (d) Duczek, W.; Tittelbach, F.; Costisella, B.;
Niclas, H. J. Tetrahedron 1996, 52, 8733. (e) Bartoszek, M.; Duczek, W.;
Tittelbach, F.; Niclas, H.-J. Synth. Met. 1996, 77, 93. (f) Giesa, S.; Gross,
J. H.; Hull, W. E.; Lebedkin, S.; Gromov, A.; Gleiter, R.; Kra¨tschmer, W.
Chem. Commun. 1999, 465. (g) Murata, Y.; Murata, M.; Komatsu, K. Chem.
Eur. J. 2003, 9, 1600.
(11) Xu, X. F.; Shang, Z. F.; Wang, G. C.; Cai, Z. S.; Pan, Y. M.; Zhao,
X. Z. J. Phys. Chem. A 2002, 106, 9284.
(12) Heymann, D.; Bachilo, S. M.; Weisman, R. B.; Marriott, T.; Cataldo,
F. Fullerenes, Nanotubes, Carbon Nanostruct. 2002, 10, 37, and references
therein.
(13) (a) Bandgar, B. P.; Joshi, N. S.; Kamble, V. T. Tetrahedron Lett.
2006, 47, 4775. (b) Bellomo, A.; Gonzalez, D. Tetrahedron Lett. 2007, 48,
3047, and references therein.
J. Org. Chem, Vol. 73, No. 7, 2008 2519