2176 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 7
Ellis et al.
(14) Tang, Y. Q.; Dong, Y. X.; Wittlin, S.; Charman, S. A.; Chollet, J.
Weak base dispiro-1,2,4-trioxolanes: potent antimalarial ozonides.
Bioorg. Med. Chem. Lett. 2007, 17, 1260–1265.
(15) Vennerstrom, J. L.; Fu, H. N.; Ellis, W. Y.; Ager, A. L.; Wood, J. K.
Dispiro-1,2,4,5-tetraoxanes. A new class of antimalarial peroxides.
J. Med. Chem. 1992, 35, 3023–3027.
(16) Dong, Y. X.; Vennerstrom, J. L. Dispiro-1,2,4,5-tetraoxanes via
ozonolysis of cycloalkanone O-methyl oximes: a comparison with the
peroxidation of cycloalkanones in acetonitrile-sulfuric acid media.
J. Org. Chem. 1998, 63, 8582–8585.
(17) Dong, Y. X.; Matile, H.; Chollet, J.; Kaminsky, R.; Wood, J. K.
Synthesis and antimalarial activity of 11 dispiro-1,2,4,5-tetraoxane
analogues of WR 148999. 7,8,15,16-Tetraoxadispiro 5.2.5.2 hexade-
canes substituted at the 1 and 10 positions with unsaturated and polar
functional groups. J. Med. Chem. 1999, 42, 1477–1480.
(18) Tsuchiya, K.; Hamada, Y.; Masuyama, A.; Nojima, M.; McCullough,
K. J. Synthesis, crystal structure and anti-malarial activity of novel
spiro-1,2,4,5-tetraoxacycloalkanes. Tetrahedron Lett. 1999, 40, 4077–
4080.
26.4, 26.2, 22.6, 19.8, 8.26. MS m/z (ES, +ve, CH3OH), 428 ([M
+ Na]+, 100%). Found [M + Na]+, 428.2100. C19H35NO6NaS
requires 428.2083. Anal. (C19H35NO6S) C, H, N.
12c: R ) iPr, 38%, white solid. 1H NMR (CDCl3), δ: 3.31–3.50,
(4H, m, 4H1), 3.15, (2H, m, CH3CHCH3), 2.50 (2H, bs, 2H2a),
2.25 (2H, bs, 2H3a), 1.85 (2H, bs, 2H2b), 1.60–1.20 (26H, m, 2H3b,
CH3CHCH3, dodecane ring). 13C NMR (CDCl3), δ: 113.5, 105.9,
54.2, 44.8, 42.0, 35.3, 29.9, 26.3, 26.1, 22.6, 19.7, 17.7. MS m/z
(ES, +ve, CH3OH), 442 ([M + Na]+, 100%). Found [M + Na]+,
442.2256. C20H37NO6NaS requires 442.2239. Anal. (C20H37NO6S)
C, H, N.
12f: R ) Ph, 20%, white solid. 1H NMR (CDCl3), δ: 7.95–7.45
(5H, m, aromatics), 3.05–3.35 (4H, m, 4H1), 2.50 (2H, bs, 2H2a),
2.25 (2H, bs, 2H3a), 1.85 (2H, bs, 2H2b), 1.62 (2H, m, 2H3b),
1.21–1.49 (18H, m, dodecane ring). 13C NMR (CDCl3), δ: 136.5,
133.4, 129.6, 128.0, 113.4, 105.7, 43.7, 42.4, 31.6, 29.7, 26.5, 26.2,
23.1, 19.7. MS m/z (ES, +ve, CH3OH), 476 ([M + Na]+, 100%).
Found [M + Na]+, 476.2097. C23H35NO6NaS requires 476.2083.
Anal. (C23H35NO6S) C, H, N.
(19) Nonami, Y.; Tokuyasu, T.; Masuyama, A.; Nojima, M.; McCullough,
K. J. Synthesis, crystal structure and antimalarial activity of function-
alized spiro-1,2,4,5-tetraoxacycloalkanes from unsaturated hydroperoxy
peracetals. Tetrahedron Lett. 2000, 41, 4681–4684.
(20) Vennerstrom, J. L.; Dong, Y. X.; Andersen, S. L.; Ager, A. L.; Fu,
H. N. Synthesis and antimalarial activity of sixteen dispiro-1,2,4,5-
tetraoxanes: alkyl-substituted 7,8,15,16-tetraoxadispiro 5.2.5.2 hexa-
decanes. J. Med. Chem. 2000, 43, 2753–2758.
(21) Kim, H. S.; Nagai, Y.; Ono, K.; Begum, K.; Wataya, Y. Synthesis
and antimalarial activity of novel medium-sized 1,2,4,5-tetraoxacy-
cloalkanes. J. Med. Chem. 2001, 44, 2357–2361.
(22) Opsenica, D.; Pocsfalvi, G.; Milhous, W. K.; Solaja, B. A. Antimalarial
peroxides: the first intramolecular 1,2,4,5-tetraoxane. J. Serb. Chem.
Soc. 2002, 67, 465–471.
(23) Iskra, J.; Bonnet-Delpon, D.; Begue, J. P. One-pot synthesis of non-
symmetric tetraoxanes with the H2O2/MTO/fluorous alcohol system.
Tetrahedron Lett. 2003, 44, 6309–6312.
Acknowledgment. This work was supported by grants from
the EU (Antimal, FP6 Malaria Drugs Initiative) and the BBSRC
(S.A.W., P.O.N., P.G., Grant BB/C006321/1).
Supporting Information Available: Experimental details for
the synthesis of 10a-i and tetraoxane 33, combustion analysis
results, additional detailed information on cytotoxicity and ge-
neotoxicity studies, synthesis procedures for compounds 20-22
used in the section Stability and Reactivity Studies and additional
details on stability tests, and details of the confocal microscopy
procedure. This material is available free of charge via the Internet
(24) Terent’ev, A. O.; Kutkin, A. V.; Starikova, Z. A.; Antipin, M. Y.;
Ogibin, Y. N. New preparation of 1,2,4,5-tetraoxanes. Synthesis 2004,
2356–2366.
(25) Masuyama, A.; Wu, J. M.; Nojima, M.; Kim, H. S.; Wataya, Y. 1,2,4,5-
Tetraoxacycloalkanes: synthesis and antimalarial activity. Mini-ReV.
Med. Chem. 2005, 5, 1035–1043.
(26) Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.; Bray, P. G.
Design and synthesis of orally active dispiro 1,2,4,5-tetraoxanes;
synthetic antimalarials with superior activity to artemisinin. Org.
Biomol. Chem. 2006, 4, 4431–4436.
(27) (a) Amewu, R.; Stachulski, A. V.; Ward, S. A.; Berry, N. G.; Bray,
P. G. Design and synthesis of orally active dispiro 1,2,4,5-tetraoxanes;
synthetic antimalarials with superior activity to artemisinin. Org.
Biomol. Chem. 2007, 5, 708–708. (b) Terent’ev, A. O.; Kutkin, A. V.;
Starikova, Z. A.; Antipin, M. Y.; Ogibin, Y. N.; Nikishina, G. I. New
preparation of 1,2,4,5-tetraoxanes. Synthesis 2004, 14, 2356–2366.
(28) Tang, Y. Q.; Dong, Y. X.; Wang, X. F.; Sriraghavan, K.; Wood, J. K.
Dispiro-1,2,4-trioxane analogues of a prototype dispiro-1,2,4-triox-
olane: mechanistic comparators for artemisinin in the context of
reaction pathways with iron(II). J. Org. Chem. 2005, 70, 5103–5110.
(29) Engler, T. A.; Wanner, J. Lewis acid-directed cyclocondensation of
piperidone enol ethers with 2-methoxy-4-(N-phenylsulfonyl)-1,4-
benzoquinoneimine: a new regioselective synthesis of oxygenated
carbolines. J. Org. Chem. 2000, 65, 2444–2457.
(30) Zmitek, K.; Stavber, S.; Zupan, M.; Bonnet-Delpon, D.; Iskra, J.
Fluorinated alcohol directed formation of dispiro-1,2,4,5-tetraoxanes
by hydrogen peroxide under acid conditions. Tetrahedron 2006, 62,
1479–1484.
(31) Berdini, V.; Cesta, M. C.; Curti, R.; D’Anniballe, G.; Di Bello, N. A
modified palladium catalysed reductive amination procedure. Tetra-
hedron 2002, 58, 5669–5674.
(32) Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J. X.; Wilairat, P.; Riscoe,
M. Simple and inexpensive fluorescence-based technique for high-
throughput antimalarial drug screening. Antimicrob. Agents Chemother.
2004, 48, 1803–1806.
(33) Peters, W.; Fleck, S. L.; Robinson, B. L.; Stewart, L. B.; Jefford, C. W.
The chemotherapy of rodent malaria. LX. The importance of formula-
tion in evaluating the blood schizontocidal activity of some endo-
peroxide antimalarials. Ann. Trop. Med. Parasitol. 2002, 96, 559–
573.
References
(1) O’Neill, P. M.; Posner, G. H. A medicinal chemistry perspective on
artemisinin and related endoperoxides. J. Med. Chem. 2004, 47, 2945–
2964.
(2) Haynes, R. K. From artemisinin to new artemisinin antimalarials:
biosynthesis, extraction, old and new derivatives, stereochemistry and
medicinal chemistry requirements. Curr. Top. Med. Chem. 2006, 6,
509–537.
(3) O’Neill, P. M. The therapeutic potential of semi-synthetic artemisinin
and synthetic endoperoxide antimalarial agents. Expert Opin. InVest.
Drugs 2005, 14, 1117–1128.
(4) Dong, Y. X.; Vennerstrom, J. L. Peroxidic antimalarials. Expert Opin.
Ther. Pat. 2001, 11, 1753–1760.
(5) Haynes, R. K. Artemisinin and derivatives: the future for malaria
treatment. Curr. Opin. Infect. Dis. 2001, 14, 719–726.
(6) Dong, Y. X.; Chollet, J.; Matile, H.; Charman, S. A.; Chiu, F. C. K.
Spiro and dispiro-1,2,4-trioxolanes as antimalarial peroxides: charting
a workable structure-activity relationship using simple prototypes.
J. Med. Chem. 2005, 48, 4953–4961.
(7) Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu,
F. C. K. Identification of an antimalarial synthetic trioxolane drug
development candidate. Nature 2004, 430, 900–904.
(8) Singh, C.; Sharma, U.; Saxena, G.; Puri, S. K. Orally active
antimalarials: synthesis and bioevaluation of a new series of steroid-
based 1.2.4-trioxanes against multi-drug resistant malaria in mice.
Bioorg. Med. Chem. Lett. 2007, 17, 4097–4101.
(9) Benoit-Vical, F.; Lelievre, J.; Berry, A.; Deymier, C.; Dechy-Cabaret,
O. Trioxaquines are new antimalarial agents active on all erythrocytic
forms, including gametocytes. Antimicrob. Agents Chemother. 2007,
51, 1463–1472.
(10) Griesbeck, A. G.; El-Idreesy, T. T. En route to improved antimalarial
peroxides following the natural role model artemisinin. J. Chin. Chem.
Soc. (Taipei) 2006, 53, 1469–1476.
(11) Posner, G. H.; Chang, W.; Sinishtaj, S.; Rosenthal, A. S.; Kalinda,
A. S. Curing malaria-infected rodents using artemisinin-derived
trioxane dimers. Am. J. Trop. Med. Hyg. 2006, 75, 153–153.
(12) Jin, H. X.; Zhang, Q.; Kim, H. S.; Wataya, Y.; Liu, H. H. Design,
synthesis and in vitro antimalarial activity of spiroperoxides. Tetra-
hedron 2006, 62, 7699–7711.
(34) McMillian, M. K.; Li, L.; Parker, J. B.; Patel, L.; Zhong, Z. An
improved resazurin-based cytotoxicity assay for hepatic cells. Cell Biol.
Toxicol. 2002, 18, 157–173.
(35) Oda, Y.; Funasaka, K.; Kitano, M.; Nakama, A.; Yoshikura, T. Use
of a high-throughput umu-microplate test system for rapid detection
of genotoxicity produced by mutagenic carcinogens and airborne
particulate matter. EnViron. Mol. Mutagen. 2004, 43, 10–19.
(13) Griesbeck, A. G.; El-Idreesy, T. T.; Bartoschek, A. Photooxygenation
in polymer matrices: en route to highly active antimalarial peroxides.
Pure Appl. Chem. 2005, 77, 1059–1074.