labeled these compounds as isofagomine 2a.4 The structure
activity relationship data indicates that the bioactivity of 1 and
2 is reliant on the position and orientation of the hydroxyalkyl
group in the piperidine iminosugars.5 For example, isofagomine
2a is stronger and more selective inhibitor of â-glucosidases;
however, its 5(S)-hydroxy (C5-hydrogen replaced by -OH)
substituted analogue 2b is a better inhibitor toward both R and
â-glucosidases6 whereas 5(R)-hydroxy isofagomine 2c is a mild
â-mannosidase inhibitor.4i,7d The N-alkyl derivatives of 2b
inhibit glycolipid biosynthesis6 with little inhibitory activity
against glycosidases. Although R/â-hydroxyalkyl substituted
piperidine iminosugars are known in the literature, the existence
of γ-hydroxyalkyl substituted pattern is not known. As a part
of our continuing efforts in this area,7 we are now reporting
hitherto unknown γ-1,2-dihydroxyethyl and hydroxymethyl
Synthesis of γ-Hydroxyalkyl Substituted
Piperidine Iminosugars from D-Glucose
Rajendra S. Mane, K. S. Ajish Kumar, and
Dilip D. Dhavale*
Department of Chemistry, Garware Research Centre, UniVersity
of Pune, Pune- 411 007, India
ReceiVed January 9, 2008
(4) (a) Dong, W.; Jespersen, T.; Bols, M.; Skrydstrup, T.; Sierks, M. R.
Biochemistry 1996, 35, 2788-2795. (b) Jespersen, T. M.; Dong, W.; Sierks,
M. R.; Skrydstrup, T.; Lundt, I.; Bols, M. Angew. Chem., Int. Ed. Engl.
1994, 33, 1778-1779. (c) Jespersen, T. M.; Bols, M. Tetrahedron 1994,
50, 13449-13460. (d) Ichikawa, Y.; Igarashi, Y. Tetrahedron Lett. 1995,
36, 4585. (e) Bols, M. Acc. Chem. Res. 1998, 31, 1-8. (f) Ichikawa, Y.;
Igarashi, Y.; Ichikawa, M.; Suhura, Y. J. Am. Chem. Soc. 1998, 120, 5854.
(g) Willams, S. J.; Hoos, R.; Withers, S. G. J. Am. Chem. Soc. 2000, 122,
2223-2235. (h) Nishimura, Y.; Shitara, E.; Adachi, H.; Toyoshima, M.;
Nakajima, M.; Okami, Y.; Takeuchi, T. J. Org. Chem. 2000, 65, 2-11. (i)
Pandey, G.; Kapur, M.; Khan, M. I.; Gaikwad, S. M. Org. Biomol. Chem.
2003, 1, 3321-3326. (j) Yokoyama, H.; Ejiri, H.; Miyazawa, M.; Yamagu-
chi, S.; Hirai, Y. Tetrahedron: Asymmetry 2007, 18, 852-856. (k) Steet,
R.; Chung, S.; Lee, W.; Pine, C. W.; Do, H.; Kornfeld, S. Biochem.
Pharmacol. 2007, 73, 1376-1386. (l) Imahori, T.; Ojima, H.; Tateyama,
H.; Mihara, Y.; Takahata, H. Tetrahedron Lett. 2008, 49, 265-268.
(5) (a) Kajimoto, T.; Liu, K. K. C.; Pederson, R. L.; Zhong, Z., Jr.;
Ichikawa, Y.; Porco, J. A.; Wong, H. J. Am. Chem. Soc. 1991, 113, 6187-
6196. (b) Xu, Y.; Zhou, W. J. Chem. Soc., Perkin Trans. 1 1997, 1, 741-
746. (c) Asano, N.; Kato, A.; Miyauchi, M.; Kizu, H.; Kameda, Y.; Watson,
A. A.; Nash, R. J.; Fleet, G. W. J. J. Nat. Prod. 1998, 61, 625-628. (d)
Bols, M.; Lillelund, V. H.; Jensen, H. H.; Liang, X. Chem. ReV. 2002, 102,
515-553 and references cited therein. (e) Elbein, A. D. Annu. ReV. Biochem.
1987, 56, 497-534. (f) Karpas, A.; Fleet, G. W. J.; Dwek, R. A.; Petursson,
S.; Namgoong, S. K.; Ramsden, N. G.; Jacob, G. S.; Rademacher, T. W.
Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 9229-9236. (g) Karpas, A.; Fleet,
G. W. J.; Dwek, R. A.; Petursson, S.; Namgoong, S. K.; Ramsden, N. G.;
Jacob, G. S.; Rademacher, T. W. FEBS Lett. 1988, 237, 128-132. (h) Fleet,
G. W. J. Chem. Ber. 1989, 287-292. (i) Winchester, B.; Fleet, G. W. J.
Glycobiology 1992, 2, 199-210. (j) Merror, Y. L.; Poitout, L.; Deepazy,
J.; Dosbaa, I.; Geoffroy, S.; Foglietti, M. Bioorg. Med. Chem. 1997, 5,
519-553. (k) Stutz, A. E. Iminosugars as Glycosidase Inhibitors, Nojiri-
mycin and Beyond; Wiley-VCH: Weinheim, 1999. (l) Heightman, T. D.;
Vasella, A. T. Angew. Chem., Int. Ed. 1999, 38, 750-770. (m) Goujon, J.
Y.; Gueyrard, D.; Philippe, C.; Olivier, M. R.; Asano, N. Tetrahedron:
Asymmetry 2003, 14, 1969-1972. (n) Jenson, H. H.; Bols, M. Acc. Chem.
Res. 2006, 39, 259-265. (o) Zhou, J.; Zhou, J.; Meng, Y.; Chen, M. J.
Chem. Theory Comput. 2006, 2, 157-165. (p) Wicki, J.; Williams, S. J.;
Withers, S. G. J. Am. Chem. Soc. 2007, 129, 4530-4531. (q) Gloster, T.
M.; Meloncelli, P. R.; Stick, V.; Zechel, D.; Vasella, A.; Davies, G. J. J.
Am. Chem. Soc. 2007, 129, 2349-2352. (r) See the recent book on
iminosugars: Compain, P., Martin, O. R., Eds. Imunosugars: From
synthesis to therapeutic applications; Wiley: New York, 2007.
D-Glucose was converted to synthetic equivalent of meso-
pentodialdose, namely 3-C-(1′-aminoethyl)-R-D-ribo-pento-
dialdo-1,4-furanose 10 that gives an easy access to manipu-
late the aldehyde functionalities on either sides to get
enantiomeric pair of 3. Thus, reduction of C5-aldehyde
followed by hydrolysis of 1,2-acetonide functionality and
reductive aminocyclization with C1-aldehyde afforded γ-1,2-
dihydroxyethyl piperidine iminosugar 3. On the other hand,
first reductive aminocyclization with C5-aldehyde gave
piperidine ring skeleton 12 that on removal of 1,2-acetonide
and reduction of C1-aldehyde gave ent-3 while chopping of
C1-aldehyde in 12 and reduction afforded γ-hydroxymethyl
piperidine iminosugar 4.
Among six membered iminosugars, the nojirimycin 1a was
the first to be recognized as a glycosidase inhibitor;1 however,
it was noticed that 1a was highly unstable to the mild acidic/
basic conditions. This led to the discovery of a more stable and
promising glycosidase inhibitor, namely 1-deoxynojirimycin 1b,
that was synthesized first2a and then isolated.2b,c Later on, 1,2-
dideoxynojirimycin, commonly known as fagomine 1c, was
isolated and evaluated for biological studies.3 A common feature
in 1 is the presence of hydroxymethyl substituent at the
R-position with respect to the ring nitrogen atom. In an attempt
to find a classical variation in the position of hydroxymethyl
substituent in 1, Bols et al. synthesized â-hydroxymethyl
substituted hydroxylated piperidine iminosugars in which
nitrogen atom was shifted to the anomeric position of 1 and
(6) Ichikawa, M.; Igarashi, Y.; Ichikawa, Y. Tetrahedron Lett. 1995, 36,
1767-1770.
(7) (a) Dhavale, D. D.; Markad, S. D.; Karanjule, N. S.; PrakashaReddy,
J. J. Org. Chem. 2004, 69, 4760-4766. (b) Patil, N. T.; Tilekar, J. N.;
Dhavale, D. D. J. Org. Chem. 2001, 66, 1065-1074 and references cited
therein. (c) Markad, S. D.; Karanjule, N. S.; Sharma, T.; Sabharwal, S. G.;
Dhavale, D. D. Biorg. Med. Chem. 2006, 14, 5535-5539. (d) Matin, M.
M.; Sharma, T.; Sabharwal, S. G.; Dhavale, D. D. Org. Biomol. Chem.
2005, 3, 1702-1707. (e) Dhavale, D. D.; Matin, M. M.; Sharma, T.;
Sabharwal, S. G. Bioorg. Med. Chem. 2004, 12, 4039-4044. (f) Dhavale,
D. D.; Ajish Kumar, K. S.; Chaudhari, V. D.; Sharma, T.; Sabharwal, S.
G.; PrakashaReddy, J. Org. Biomol. Chem. 2005, 3, 3720-3726. (g) Ajish
Kumar, K. S.; Chaudhari, V. D.; Puranik, V. G.; Dhavale, D. D. Eur. J.
Org. Chem. 2007, 29, 4895-4901 and references cited therein.
(1) Ishida, N.; Kumagai, K.; Niida, T.; Tsuruoka, T.; Yumate, H. J.
Antibiot. 1967, 20, 66-71.
(2) (a) Bernotas, R. C.; Papandreou, G.; Urbach.J.; Ganem, B. Tetrahe-
dron Lett. 1990, 31, 3393-3396. (b) Murao, S.; Miyata, S. Agric. Biol.
Chem. 1980, 44, 219-221. (c) Yagi, M.; Kouno, T.; Aoyagi, Y.; Murai,
H. Nippon Nogei Kagaku Kaishi 1976, 50, 571-572.
(3) Koyama, M.; Aijima, T.; Sakamura, S. Agric. Biol. Chem. 1974, 38,
1467-1469.
10.1021/jo800044r CCC: $40.75 © 2008 American Chemical Society
Published on Web 03/15/2008
3284
J. Org. Chem. 2008, 73, 3284-3287