formation was obtained using diphenylacetylene and p-
methoxybenzenediazonium tetrafluoroborate with HCO2K
and Pd(OAc)2 in THF, EtOH, or DMF as the solvent at
temperatures ranging from rt to 60 °C. Surmising that in the
presence of formate anions the reduction of the alkyne and
the arylpalladium intermediate is faster than the carbopal-
ladation reaction, we decided to explore the utilization of
other, possibly more selective, reducing agents and focused
our attention on trialkylsilanes. After a number of experi-
ments, success was finally encountered under the conditions
reported in Table 1, entry 12, which allowed for the isolation
of 3a in 82% yield.14
Table 1. Reducing Agents, Solvents, and Temperature in the
Palladium-Catalyzed Hydroarylation of Diphenylacetylene with
p-Methoxybenzenediazonium Tetrafluoroboratea
reducing
agent
T
(°C)
time yieldb of
entry
solvent
THF
THF
THF/MeOHc
DMF
(h)
3a (%)
E/Z
1
2
3
4
5
Et3SiH
Et3SiH
Et3SiH
Et3SiH
Et3SiH
rt 24
40 24
rt
rt 24
rt 24
rt 24
rt 24
rt 24
19
>99:1
traces
13
6
>99:1
MeCN
21
32
53
62
25
35
62
82d
71d
>99:1
>99:1
>99:1
>99:1
97:3
6
Oct3SiH THF
7
i-Pr3SiH THF
These “optimal” conditions were then applied to other
arenediazonium tetrafluoroborates (Table 2). Hydroarylation
8
9
10
11
12
13
Ph3SiH
Ph3SiH
Ph3SiH
Ph3SiH
Ph3SiH
THF
THF
MeCN
DMF
THF
40
rt
rt
rt
rt
2
2
0.75
3.5
1.5
97:3
>99:1
>99:1
>99:1
Table 2. Palladium-Catalyzed Hydroarylation of
Diphenylacetylene with Arenediazonium Tetrafluoroborates 2a
i-Pr3SiH THF
entry
R1
2
time (h)
yield of 3b,c (%)
a Unless otherwise stated, reactions of entries 7-19 were carried out on
a 0.5 mmol scale, under argon, using 1 equiv of diphenylacetylene, 1.5
equiv of p-methoxybenzenediazonium tetrafluoroborate, 2 equiv of R3SiH,
and 0.02 equiv of Pd(OAc)2 in 4 mL of solvent. b Yields are given for
isolated products. c THF/MeOH 1:1. d In the presence of 4 equiv of
p-methoxybenzenediazonium tetrafluoroborate.
1
2
3
4
5
6
7
8
9
p-MeO-
m-CF3-
p-Me-
p-MeCO-
m-MeO-
o-MeO-
3,4,5-(MeO)3-
2-Me,4-F-
p-CN-
2a
2b
2c
2d
2e
2f
2g
2h
2i
3.5
7
5
82, 3a
58, 3b
86, 3c
59, 3d
77, 3e
56,d 3f
51, 3g
66,d 3h
54, 3i
42, 3j
89, 3k
53, 3l
8
22
24
24
24
24
24
24
24
the triflate anion by formate.13 Assuming that some similarity
might exist between arylpalladium intermediates derived
from the reaction of arenediazonium salts with Pd(0) and
vinylpalladium intermediates derived from the oxidative
addition of vinyl triflates to Pd(0) (at least as far as the
intermediacy of cationic organopalladium complexes is
concerned), the utilization of phosphine-free conditions
appeared appropriate to our study. Representative optimiza-
tion experiments are summarized in Table 1.
10
11
12
p-NO2-
2,4-Me2-
p-MeO2C-
2j
2k
2l
a Reactions were carried out under argon on a 0.5 mmol scale using 1
equiv of diphenylacetylene, 4 equiv of 2, 2 equiv of Ph3SiH, 0.02 equiv of
Pd(OAc)2 in 4 mL of anhydrous THF at rt. b Yields are given for isolated
products. c E/Z ratios were calculated by NMR analyses and were usually
found to be higher than 99:1. d E/Z ) 96:4.
Potassium formate is commonly used in hydroarylation
reactions with aryl halides, but no evidence of alkene
(2) For some recent selected references, see: (a) Brunner, H.; Le
Cousturier de Courcy, N.; Geneˆt, J.-P. Synlett 2000, 201. (b) Cai, M. Z.;
Hu, R. H.; Zhou, J. Chin. Chem. Lett. 2001, 12, 861. (c) Hu, R.-H.; Liu,
X.-L.; Cai, M.-Z. Jiangxi Shifan Daxue Xuebao, Ziran Kexueban 2001,
25, 246; Chem. Abstr. 2001, 136, 355024. (d) Darses, S.; Pucheault, M.;
Geneˆt, J.-P. Eur. J. Org. Chem. 2001, 1121. (e) Sengupta, S.; Bhattacharyya,
S. Tetrahedron Lett. 2001, 42, 2035. (f) Andrus, M. B.; Song, C.; Zhang,
J. Org. Lett. 2002, 4, 2079. (g) Selvakumar, K.; Zapf, A.; Spannenberg,
A.; Beller, M. Chem. Eur. J. 2002, 8, 3901. (h) Andrus, M. B.; Ma, Y.;
Zang, Y.; Song, C. Tetrahedron Lett. 2002, 43, 9137. (i) Ma, Y.; Song, C.;
Chai, Q.; Ma, C.; Andrus, M. B. Synthesis 2003, 2886. (j) Wang, C.; Tan,
L.-S.; He, J.-P.; Hu, H.-W.; Xu, J.-H. Synth. Commun. 2003, 33, 773. (k)
Masllorens, J.; Moreno-Man˜as, M.; Pla-Quintana, A.; Roglans, A. Org. Lett.
2003, 5, 1559. (l) Schmidt, B. Chem. Commun. 2003, 1656. (m) Nelson,
M. L.; Ismail, M. Y.; McIntyre, L.; Bhatia, B.; Viski, P.; Hawkins, P.;
Rennie, G.; Andorsky, D.; Messersmith, D.; Stapleton, K.; Dumornay, J.;
Sheahan, P.; Verma, A. K.; Warchol, T.; Levy, S. B. J. Org. Chem. 2003,
68, 5838. (n) Dai, M.; Liang, B.; Wang, C.; Chen, J.; Yang, Z. Org. Lett.
2004, 6, 221. (o) Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron
Lett. 2004, 45, 2775. (p) Xu, L.-H.; Zhang, Y.-Y.; Wang, X.-L.; Chou,
J.-Y. Dyes Pigm. 2004, 62, 283. (q) Sabino, A. A.; Machado, A. H. L.;
Correia, C. R. D.; Eberlin, M. N. Angew. Chem., Int. Ed. 2004, 43, 2514.
(r) Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.; Eberlin, M. N.
Angew. Chem., Int. Ed. 2004, 43, 4389. (s) Masllorens, J.; Bouquillon, S.;
Roglans, A.; He´nin, F.; Muzart, J. J. Organomet. Chem. 2005, 690, 3822.
(t) Garcia, A. L. L.; Carpes, M. J. S.; Montes de Oca, A. C. B.; dos Santos,
M. A. G.; Santana, C. C.; Correia, C. R. D. J. Org. Chem. 2005, 70, 1050.
(u) Artuso, E.; Barbero, M.; Degani, I.; Dughera, S.; Fochi, R. Tetrahedron
2006, 62, 3146. (w) Pastre, J. C.; Correia, C. R. D. Org. Lett. 2006, 8,
1657. (v) Perez, R.; Veronese, D.; Coelho, F.; Antunes, O. A. C. Tetrahedron
Lett. 2006, 47, 1325.
products were isolated in moderate to high yields. The
reaction tolerates a variety of substituents including keto,
ester, cyano, and nitro groups (palladium-catalyzed reactions
with the latter frequently fail because of their tendency to
(3) For some recent references, see: (a) Willis, D. M.; Strongin, R. M.
Tetrahedron Lett. 2000, 41, 6271. (b) Babudri, F.; Farinola, G. M.; Naso,
F.; Panessa, D. J. Org. Chem. 2000, 65, 1554. (c) Andrus, M. B.; Song, C.
Org. Lett. 2001, 3, 3761. (d) Frohn, H.-J.; Adonin, N. Y.; Bardin, V. V.;
Starichenko, V. F. J. Fluorine Chem. 2002, 117, 115. (e) Peyroux, E.;
Berthiol, F.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2004, 1075. (f)
Jo, J.; Chi, C.; Ho¨ger, S.; Wegner, G.; Yoon, D. Y. Chem. Eur. J. 2004,
10, 2681. (g) Gallo, V.; Mastrorilli, P.; Nobile, C. F.; Paolillo, R.; Taccardi,
N. Eur. J. Inorg. Chem. 2005, 582. See also: (h) Darses, S.; Genet, J. P.
Eur. J. Org. Chem. 2003, 4313.
(4) (a) Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. Chem. Lett. 1982,
35. (b) Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. J. Org. Chem.
1983, 48, 1333. (c) Kikukawa, K.; Idemoto, T.; Katayama, A.; Kono, K.;
Wada, F.; Matsuda, T. J. Chem. Soc., Perkin Trans. 1 1987, 1511. (d)
Dughera, S. Synthesis 2006, 1117.
(5) (a) Kikukawa, K.; Kono, K.; Nagira, K.; Wada, F.; Matsuda, T.
Tetrahedron Lett. 1980, 21, 2877. (b) Nagira, K.; Kikukawa, K.; Wada, F.;
Matsuda, T. J. Org. Chem. 1980, 45, 2365. (c) Kikukawa, K.; Kono, K.;
Nagira, K.; Wada, F.; Matsuda, T. J. Org. Chem. 1981, 46, 4413. (d)
Sengupta, S.; Sadhukhan, S. K.; Bhattacharyya, S.; Guha, J. J. Chem. Soc.,
Perkin Trans. 1 1998, 407. (e) Kikukawa, K.; Totoki, T.; Wada, F.; Matsuda,
T. J. Organomet. Chem. 1984, 270, 283. (f) Siegrist, U.; Rapold, T.; Blaser,
H.-U. Org. Process Res. DeV. 2003, 7, 429.
(6) Pelzer, G.; Keim, W. J. Mol. Catal. A: Chem. 1999, 139, 235.
1598
Org. Lett., Vol. 10, No. 8, 2008