Design, Synthesis, and Properties of 2
′
,4′
-BNANC
A R T I C L E S
In spite of these drawbacks, 2′,4′-BNA (LNA) remains the
most promising bridged nucleic-acid derivative to date, although
several similar modifications such as ENA (NA-2),46,50 Aza-
ENA (NA-3),31 and NA-451 have been reported. We recently
reported another BNA modification, 2′,4′-BNACOC (NA-5),
which dramatically improved nuclease resistance at the expense
of decreased hybridizing ability.52 Our continued efforts to
engineer the BNA structure has resulted in the development of
a novel BNA analogue, 2′,4′-BNANC (NA-6), which is more
potent than 2′,4′-BNA (LNA).53 Three structural analogues of
2′,4′-BNANC, namely, 2′,4′-BNANC[NH], [NMe], and [NBn],
have been synthesized, and their biophysical properties and
nuclease resistance were investigated. We recently communi-
cated preliminary results regarding highly stable triplex forma-
tion by 2′,4′-BNANC[NH]53 and RNA-selective hybridization
with the 2′,4′-BNANC[NMe] analogue.54 Herein, we report full
details regarding the development of all of the 2′,4′-BNANC
analogues and compare their overall properties with those of
2′,4′-BNA (LNA).
Figure 1. Structures of 2′,4′-linkage bridged nucleic acids.
2′-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA,18,19 also
called LNA16,17,20), (NA-1, Figure 1), independently developed
by Wengel et al. and us, has become extremely useful in nucleic-
acid-based technologies.32-43 The utility of this compound is
due to its unprecedented hybridizing affinity for complementary
strands (RNA and DNA), its sequence selectivity, its aqueous
solubility, and its improved biostability compared to that of
natural oligonucleotides. Because of its utility, 2′,4′-BNA (LNA)
is now commercially available, and 2′,4′-BNA (LNA)-modified
antisense oligonucleotides are entering human clinical trials.44,45
Although genomics investigations using this molecule are
vigorously expanding in a wide range of molecular biological
technologies, it is clear that there is need for further development
because: (i) the nuclease resistance of 2′,4′-BNA (LNA),
although somewhat better than that of natural DNA, is signifi-
cantly lower than that obtained by the PS oligonucleotide,23,46
(ii) oligonucleotides either with consecutive 2′,4′-BNA (LNA)
units or fully modified by this analogue are very rigid,47,48
resulting in inefficient (or total failure of) triplex formation, and
(iii) a kind of 2′,4′-BNA (LNA)-modified antisense oligonucle-
otides is shown to be hepatotoxic.49
Results and Discussion
1. Design of 2′,4′-BNANC. As described above, 2′,4′-BNA
(LNA) having a five-membered bridged structure is insuf-
ficiently resistant to nucleases,23,46 and fully modified 2′,4′-BNA
(LNA) oligonucleotides do not have the flexibility required for
efficient triplex formation.47,48 To overcome these problems,
BNA analogues with increased steric bulk and less conforma-
tional restriction were developed. 2′,4′-BNACOC has a seven-
membered bridged structure and exhibits dramatically improved
nuclease resistance.52 However, this modification conversely
affects duplex stability (i.e., duplexes formed with this nucleic-
acid analogue are less stable than those formed by 2′,4′-BNA
(LNA)). On the other hand, ENA, which has a six-membered
bridged structure, has slightly lower duplex-forming ability and
significantly higher nuclease resistance than 2′,4′-BNA (LNA).46,50
Triplex formation with ENA provided variable results compared
to that of 2′,4′-BNA (LNA).53,55 Taking into account the effect
of the length of the bridged moiety, we designed a novel BNA,
2′,4′-BNANC, which has a six-membered bridged structure with
a unique structural feature (N-O bond) in the sugar moiety.
The bridged moiety was designed to have a nitrogen atom,
which has proven importance in DNA chemistry such as: (i)
acting as a conjugation site56 and (ii) improvement of duplex
and triplex stability by lowering repulsions between the
negatively charged backbone phosphates.21,30,57-60 Being a
(30) Honcharenko, D.; Varghese, O. P.; Plashkevych, O.; Berman, J.; Chatto-
padhyaya, J. J. Org. Chem. 2006, 71, 299.
(31) Varghese, O. P.; Berman, J.; Pathmasiri, W.; Plashkevych, O.; Honcharenko,
D.; Chattopadhyaya, J. J. Am. Chem. Soc. 2006, 128, 15173.
(32) Wahlestedt, C. et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5633.
(33) Petersen, M.; Wengel, J. Trends Biotechnol. 2003, 21, 74.
(34) Jespen, J. S.; Wengel, J. Curr. Drug DiscoVery DeV. 2004, 7, 188.
(35) Kauppinen, S.; Vester, B.; Wengel, J. Drug DiscoVery Today: Technologies
(36) Elme´n, J.; Thonberg, H.; Ljungberg, K.; Frieden, M.; Westergaard, M.;
Xu, Y.; Wahren, B.; Liang, Z.; Ørum, H.; Koch, T.; Wahlestedt, C. Nucleic
Acids Res. 2005, 33, 439.
(37) Wang, L.; Yang, C. J.; Medley, C. D.; Benner, S. A. J. Am. Chem. Soc.
2005, 127, 15664.
(38) Chou, L. -S.; Meadows, C.; Wittwer, C. T.; Lyon, E. BioTechniques 2005,
39, 644.
(49) Swayze, E. E.; Siwkowski, A. M.; Wancewicz, E. V.; Migawa, M. T.;
Wyrzykiewicz, T. K.; Hung, G.; Monia, B. P.; Bennett, C. F. Nucleic Acids
Res. 2007, 35, 687.
(39) Brown, D.; Arzumanov, A. A.; Turner, J. J.; Stetsenko, D. A.; Lever, A.
M. L.; Gait, M. J. Nucleosides, Nucleotides Nucleic Acids 2005, 24, 393.
(40) Karkare, S.; Bhatnagar, D. Appl. Microbiol. Biotechnol. 2006, 71, 575.
(41) Morandi, L.; Ferrari, D.; Lombardo, C.; Pession, A.; Tallini, G. J. Virol.
Methods 2007, 140, 148.
(50) Morita, K.; Hasegawa, C.; Kaneko, M.; Tsutsumi, S.; Sone, J.; Ishikawa,
T.; Imanishi, T.; Koizumi, M. Bioorg. Med. Chem. Lett. 2002, 12, 73.
(51) Albaek, N.; Petersen, M.; Nielsen, P. J. Org. Chem. 2006, 71, 7731.
(52) Hari, Y.; Obika, S.; Ohnishi, R.; Eguchi, K.; Osaki, T.; Ohishi, H.; Imanishi,
T. Bioorg. Med. Chem. 2006, 14, 1029.
(42) Mook, O. R.; Baas. F.; De Wissel, M. B.; Fluiter, K. Mol. Cancer Ther.
2007, 6, 833.
(53) Rahman, S. M. A.; Seki, S.; Obika, S.; Haitani, S.; Miyashita, K.; Imanishi,
T. Angew. Chem., Int. Ed. 2007, 46, 4306.
(43) Obernosterer, G.; Martinez, J.; Alenius, M. Nature Protocols 2007, 2, 1508.
(44) Fluiter, K.; Frieden, M.; Vreijling, J.; Rosenbohm, C.; De Wissel, M. B.;
Christensen, S. M.; Koch, T.; Ørum, H.; Bass, F. ChemBiochem 2005, 6,
1104.
(54) Miyashita, K.; Rahman, S. M. A.; Seki, S.; Obika, S.; Imanishi, T. Chem.
Commun. 2007, 3765.
(55) Koizumi, M.; Morita, K.; Daigo, M.; Tsutsumi, S.; Abe, K.; Obika, S.;
Imanishi, T. Nucleic Acids Res. 2003, 31, 3267.
(56) Maag, H.; Schmidt, B.; Rose, S. J. Tetrahedron Lett. 1994, 35, 6449.
(57) Cuenoud, B.; Casset, F.; Hu¨sken, D.; Natt, F.; Wolf, R. M.; Altmann, K.
H.; Martin, P.; Moser, H. E. Angew. Chem., Int. Ed. 1998, 37, 1288.
(58) Rhee, S.; Han, Z.; Liu, K.; Miles, H. T.; Davis, D. R. Biochemistry 1999,
38, 16810.
(45) Frieden, M.; Ørum, H. IDrugs 2006, 9, 706.
(46) Morita, K.; Takagi, M.; Hasegawa, C.; Kaneko, M.; Tsutsumi, S.; Sone,
J.; Ishikawa, T.; Imanishi, T.; Koizumi, M. Bioorg. Med. Chem. 2003, 11,
2211.
(47) Obika, S.; Uneda, T.; Sugimoto, T.; Nanbu, D.; Minami, T.; Doi, T.;
Imanishi, T. Bioorg. Med. Chem. 2001, 9, 1001.
(48) Gotfredsen, C. H.; Schultze, P.; Feigon, J. J. Am. Chem. Soc. 1998, 120,
4281.
(59) Prakash, T. P.; Pu¨schi, A.; Lesnik, E.; Mohan, V.; Tereshko, V.; Egli, M.;
Manoharan, M. Org. Lett. 2004, 6, 1971.
(60) Mayer, A.; Ha¨berli, A.; Leumann, C. J. Org. Biomol. Chem. 2005, 3, 1653.
9
J. AM. CHEM. SOC. VOL. 130, NO. 14, 2008 4887