Mono- and Heterodimetallic FeII and RuII Complexes
FULL PAPER
Hofmeier, A. El-Ghayoury, A. P. H. J. Schenning, U. S. Schu-
bert, Chem. Commun. 2004, 3, 318–319.
V. W.-W. Yam, W. W. Lee, K. K. Cheung, Organometallics
1997, 16, 2833–2841.
E. A. Medlycott, G. S. Hannan, Chem. Soc. Rev. 2005, 34, 133–
142.
M. Gagliardo, G. Rodríguez, H. H. Dam, M. Lutz, A. L. Spek,
R. W. A. Havenith, P. Coppo, L. De Cola, F. Hartl, G. P. M.
van Klink, G. van Koten, Inorg. Chem. 2006, 45, 2143–2155.
a) B. R. Steele, K. Vrieze, Transition Met. Chem. 1977, 2, 140–
144; b) D. M. Grove, G. van Koten, H. J. C. Ubbels, R. Zoet,
A. L. Spek, Organometallics 1984, 3, 1003–1009; c) J. A. M.
van Beek, G. van Koten, M. J. Ramp, N. C. Coenjaarts, D. M.
Grove, K. Goublitz, M. C. Zoutberg, C. H. Stam, W. J. J.
Smeets, A. L. Spek, Inorg. Chem. 1991, 30, 3059–3068; d) A. J.
Canty, J. Patel, B. W. Skelton, A. H. White, J. Organomet.
Chem. 2000, 607, 194–202; e) G. Rodríguez, M. Albrecht, J.
Schoenmaker, A. Ford, M. Lutz, A. L. Spek, G. van Koten, J.
Am. Chem. Soc. 2002, 124, 5127–5138.
could not be carried out because of the high sensitivity to air and
moisture of the PPh2 moieties. Complex 9 was used in the next
reaction without further purification. 1H NMR (300 MHz,
CD3CN): δ = 8.96 [d, JH,H = 7.8 Hz, 2 H, tpyA(3Ј, 5Ј)], 8.70 [t,
JH,H = 8.1 Hz, 1 H, tpyA(4Ј)], 8.51 [d, JH,H = 8.4 Hz, 4 H, tpyA(3,
3ЈЈ) + tpyA(3, 3ЈЈ)], 7.98 [s, 2 H, tpyB(3Ј, 5Ј)], 7.91–7.86 [m, 4 H,
tpyA(4, 4ЈЈ) + tpyA(4, 4ЈЈ)], 7.71 [d, JHH = 7.8 Hz, 2 H, tpyA(6,
6ЈЈ)], 7.61 [d, JH,H = 8.0 Hz, 2 H, tpyB(6, 6ЈЈ)], 7.43–7.39 (m, 12
H, para-H + meta-H PAr), 7.34–7.28 [m, 6 H, Ar + tpyA(5, 5ЈЈ) +
tpyA(5, 5ЈЈ)], 7.09 (m, 9 H, Ar + ortho-H PAr), 2.7 (s, 4 H, CH2)
ppm. 31P{1H} NMR (121.4 MHz, CD3CN): δ = –4.9 (s, 2 P),
[4]
[5]
[6]
[7]
1
–143.28 (sept, JP,F = 705 Hz, [PF6]–) ppm. ESI-MS: m/z = 497.20
[M – 2 PF6]2+
.
[Fe(tpy)(tpyPCP)Ru(tpy)](PF6)3 (11): Compounds
8
(0.10 g,
0.08 mmol) and 9 (0.05 g, 0.08 mmol) were dissolved in THF/
MeCN (2:1, 30 mL). The solution was stirred at reflux for 10 h.
The solvent was evaporated in vacuo. The deep purple residue was
washed several times with hexane until no more free bis(amino)-
[8]
[9]
H. P. Dijkstra, P. Steenwinkel, D. M. Grove, M. Lutz, A. L.
Spek, G. van Koten, Angew. Chem. Int. Ed. 1999, 38, 2186–
2188.
1
arene (NCN) ligand could be detected by H NMR spectroscopy,
and then dried in vacuo. The obtained deep purple solid (10), char-
acterized only by NMR spectroscopy, was added to 2,2Ј:6Ј,2ЈЈ-ter-
pyridine (0.02 g, 0.08 mmol) dissolved in dry MeOH (25 mL). The
mixture was heated at reflux for 2 d. Subsequently, the methanolic
solution was cooled to room temperature, filtered, and concen-
trated until a small residual amount remained. Addition of aque-
ous NH4PF6 resulted in the precipitation of 11 as an air-stable red–
purple solid that was collected by filtration, washed with water,
hexane and dried in vacuo. The crude product was purified by col-
umn chromatography on silica gel (MeCN/water/saturated NaNO3
solution 70:25:5). The major fraction was dried to afford 11 as a
red-purple solid. Yield: 0.07 g, 52%. 1H NMR (300 MHz,
CD3COCD3): δ = 9.07 [d, JH,H = 8.1 Hz, 2 H, tpyC(3Ј, 5Ј)], 8.86
[d, JH,H = 8.1 Hz, 2 H, tpyA(3Ј, 5Ј)], 8.82–8.70 [m, 3 H, tpyA(4Ј)
+ tpyC(3, 3ЈЈ)], 8.58 [t, JH,H = 8.5 Hz, 1 H, tpyC(4Ј)], 8.48 [d, JH,H
= 8.1 Hz, 4 H, tpyA(3, 3ЈЈ) + tpyB(3, 3ЈЈ)], 8.09 [s, 2 H, tpyB(3Ј,
5Ј)], 8.06–8.00 [m, 8 H, Ar + tpyA(4, 4ЈЈ) + tpyB(4, 4ЈЈ) + tpyC(4,
Representative examples of aryl pincer complexes applied as
liquid crystalline materials, optical and electro-optical devices,
sensors and catalysts: a) B. Donnio, D. W. Bruce in Structure
and Bonding (Liquid Crystals II) (Ed.: D. M. P. Mingos),
Springer, 1999; b) M. Ghedini, G. Pucci, A. Crispini, I. Aiello,
F. Barigelletti, A. Gessi, O. Francescangeli, Appl. Organomet.
Chem. 1999, 13, 565–581; c) P. Espinet, E. Garcìa-Orodea, J. A.
Miguel, Inorg. Chem. 2000, 39, 3645–3651; d) L. Omnes, B. A.
Timini, T. Gelbrich, M. B. Hursthouse, G. R. Luckhurst, D. W.
Bruce, Chem. Commun. 2001, 2248–2249; e) M. Albrecht, G.
van Koten, Angew. Chem. Int. Ed. 2001, 40, 3750–3781; f) I.
Aiello, D. Dattilo, M. Ghedini, A. Bruno, R. Termine, A. Go-
lemme, Adv. Mater. 2002, 14, 1233–1236; g) M. Talarico, G.
Barberio, D. Pucci, M. Ghedini, A. Golemme, Adv. Mater.
2003, 15, 1374–1377; h) M. E. van der Boom, D. Milstein,
Chem. Rev. 2003, 103, 1759–1792; i) J. T. Singleton, Tetrahe-
dron 2003, 59, 1837–1857; j) J. K. Szabó, Synlett 2006, 811–
824.
a) C. Moulton, B. L. Shaw, J. Chem. Soc., Dalton Trans. 1976,
1020–1024; b) F. Gorla, L. M. Venanzi, A. Albinati, Organome-
tallics 1994, 13, 43–54; c) A. Weisman, M. Gozin, H.-B.
Kraatz, D. Milstein, Inorg. Chem. 1996, 35, 1792–1797; d) G.
Jia, H. M. Lee, I. D. Williams, J. Organomet. Chem. 1997, 534,
173–180; e) M. E. van der Boom, S.-Y. Liou, Y. Ben-David,
L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 1998, 120,
6531–6541; f) M. E. van der Boom, H.-B. Kraatz, L. Hassner,
Y. Ben-David, D. Milstein, Organometallics 1999, 18, 3873–
3884; g) P. Dani, M. Albrecht, G. P. M. van Klink, G.
van Koten, Organometallics 2000, 19, 4468–4476; h) D. G. Gu-
sev, M. Madott, F. M. Dolgushin, K. A. Lyssenko, M. Y. Anti-
pin, Organometallics 2000, 19, 1734–1739; i) R. M. Gauvin, H.
Rozenberg, L. J. W. Shimon, D. Milstein, Organometallics
2001, 20, 1719–1724; j) M. W. Haenel, S. Oevers, K. Anger-
mund, W. C. Kaska, H.-J. Fan, M. B. Hall, Angew. Chem. Int.
Ed. 2001, 40, 3596–3600; k) D. Morales-Morales, R. E.
Cramer, C. M. Jensen, J. Organomet. Chem. 2002, 654, 44–50.
a) P. Steenwinkel, S. L. James, D. M. Grove, N. Veldman, A. L.
Spek, G. van Koten, Chem. Eur. J. 1996, 2, 1440–1445; b) A.
Pape, M. Lutz, G. Müller, Angew. Chem. 1994, 106, 2375–2377;
c) P. Steenwinkel, H. Kooijman, W. J. J. Smeets, A. L. Spek,
D. M. Grove, G. van Koten, Organometallics 1998, 17, 5411–
5426; d) M. Mehring, M. Schürmann, K. Jurkschat, Organo-
metallics 1998, 17, 1227–1236; e) M. Albrecht, B. M. Kocks,
A. L. Spek, G. van Koten, J. Organomet. Chem. 2001, 624,
271–286; f) H. P. Dijkstra, M. Q. Slagt, A. McDonald, C. A.
Kruithof, R. Kreiter, A. M. Mills, M. Lutz, A. L. Spek, W.
Klopper, G. P. M. van Klink, G. van Koten, Eur. J. Inorg.
Chem. 2003, 830–838.
4ЈЈ)], 7.69 [d, JH,H = 5.4 Hz, 2 H, tpyC(6, 6ЈЈ)], 7.42 [d, JH,H
=
[10]
5.1 Hz, 4 H, tpyA(6, 6ЈЈ) + tpyA(6, 6ЈЈ)], 7.64–7.53 [m, 6 H, tpyA(5,
5ЈЈ) + tpyB(5, 5ЈЈ) + tpyC(5, 5ЈЈ)], 7.35–6.77 (m, 20 H, PAr) ppm.
31P{1H} NMR (121.4 MHz, CD3CN): δ = 41.82 (s, 2 P), –142.92
1
(sept, JP,F = 705 Hz, [PF6]–) ppm. ESI-MS: m/z = 442.75 [M – 3
PF6]3+, 736.67 [M – 2 PF6]2+
.
Acknowledgments
This work was financially supported by the Council for Chemical
Sciences of the Netherlands Organization of Scientific Research
(CW-NWO).
[1] a) E. C. Constable in Electronic Materials: The Oligomer Ap-
proach, Wiley-VCH, Weinheim, 1998; b) J.-P. Collin, P. Gra-
viña, V. Heitz, J.-P. Sauvage, Eur. J. Inorg. Chem. 1998, 1–14;
c) E. A. Harriman, R. Ziessel, Coord. Chem. Rev. 1998, 171,
331–339; d) R.-A. Fallahpour, Synthesis 2003, 155–184; e) H.
Hofmeier, U. S. Schubert, Coord. Chem. Rev. 2004, 33, 373–
399; f) R. T. F. Jukes, V. Adamo, F. Hartl, P. Belser, L. De Cola,
Coord. Chem. Rev. 2005, 249, 1327–1335.
[2] a) E. C. Constable, A. M. W. Cargill Thompson, P. Harverson,
L. Macko, M. Zehnder, Chem. Eur. J. 1995, 1, 360–367; b) S.
Serroni, S. Campagna, F. Puntoriero, C. Di Pietro, N. D.
McClenaghan, F. Loiseau, Chem. Soc. Rev. 2001, 30, 367–375.
[3] a) B. G. G. Lohmeijer, U. S. Schubert, Angew. Chem. Int. Ed.
2002, 41, 3825–3829; b) B. G. G. Lohmeijer, U. S. Schubert, J.
Polym. Sci., Part A: Polym. Chem. 2003, 41, 1413–1427; c) H.
[11]
Eur. J. Inorg. Chem. 2007, 2111–2120
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
2119