2274
B. Juma et al. / Tetrahedron Letters 49 (2008) 2272–2274
4. Chen, Y.; Huesmann, P. L.; Mariano, P. S. Tetrahedron Lett. 1983,
24, 1021.
5. (a) Padwa, A.; Ginn, J. D. J. Org. Chem. 2005, 70, 5197; (b) Padwa,
A.; Bur, S. K.; Zhang, H. J. Org. Chem. 2005, 70, 6833; (c) Zhang, H.;
Padwa, A. Org. Lett. 2006, 8, 247.
6. (a) Wang, Q.; Padwa, A. Org. Lett. 2006, 8, 601; (b) Padwa, A.;
Wang, Q. J. Org. Chem. 2006, 71, 7391.
7. (a) Berry, N. M.; Darey, M. C. P.; Harwood, L. M. Synthesis 1986,
476. See also: (b) Vassilikogiannakis, G.; Margaros, I.; Tofi, M. Org.
Lett. 2004, 6, 205.
8. For a recent review of dianions, see: Langer, P.; Freiberg, W. Chem.
Rev. 2004, 104, 4125 and references cited therein.
9. Guay, B.; Deslongchamps, P. J. Org. Chem. 2003, 68, 6140.
10. Zhang, W.; Pugh, G. Tetrahedron 2003, 59, 4237.
11. Typical procedure for the synthesis of amides 8a–f: To a CH2Cl2
solution (20 mL) of 7 (200 mg, 0.77 mmol) were added N-hydroxy-
succinimide (88 mg, 0.78 mmol) and dicyclohexylcarbodiimide
(162 mg, 0.78 mmol) at 0 °C and the mixture was stirred for 1 h at
the same temperature. After stirring for 12 h, the mixture was filtered,
1-amino-2-phenylethane (0.01 mL, 0.85 mmol) was added to the
filtrate and the mixture was stirred for 2 h. The mixture was filtered
and washed for several times with water (50 mL for each washing).
The organic layer was dried (NaSO4), filtered and the filtrate was
concentrated in vacuo. The residue was purified by column chromato-
graphy (silica gel, heptanes–EtOAc) to give 8a (180 mg, 64%) as a
colourless solid.
12. General procedure for the synthesis of 9a–f: An acetone solution of
amide 8 and of a catalytic amount of p-toluenesulphonic acid was
heated under reflux for 6 h. The solution was cooled to 20 °C and
concentrated to give a solid residue, which was purified by flash
chromatography (silica gel, heptanes–EtOAc) to give compounds
9a–f. Starting with 8a (0.58 mmol), PTSA (5 mg, 0.02 mmol) and
acetone (15 mL), 9a was isolated (90 mg, 85%) as a slightly yellow
solid, mp = 168 °C. Spectroscopic data of 9a: 1H NMR (CDCl3,
250 MHz): d 7.20 (m, 1H, Ar), 7.15 (m, 2H, Ar), 7.10 (m, 2H, Ar),
5.42 (d, J = 1.7 Hz, 1H, C@CH), 3.74 (ddd, J = 13.7, 8.3, 7.6 Hz, 1H,
CH2), 3.59 (ddd, J = 13.8, 8.4, 7.1 Hz, 1H, CH2), 2.96 (m, 1H, CH),
2.78 (t, J = 8.1 Hz, 2H, CH2), 2.64 (dd, J = 17.2, 8.7 Hz, 1H, CH2),
2.54 (dd, J = 17.3, 5.0, 2.0 Hz, 1H, CH2), 2.34 (dd, J = 13.4, 4.9 Hz,
1H, CH2), 2.19 (m, 1H, CH2), 2.16 (dd, J = 17.3, 8.5 Hz, 1H, CH2),
1.69 (ddd, J = 24.8, 12.2, 4.9 Hz, 1H, CH2). 13C NMR (CDCl3,
62.9 MHz): dC = 196.9 (C), 175.0 (C), 165.9 (C), 137.2 (C), 128.7
(CH), 128.6 (CH), 126.9 (CH), 101.9 (CH), 41.6 (CH2), 37.5 (CH2),
34.8 (CH2), 34.7 (CH), 32.8 (CH2), 28.0 (CH2). IR (KBr, cmÀ1):
~m = 3322 (s), 2931 (m), 1733 (m), 1600 (br). MS (EI, 70 eV): m/z
(%) = 255 (M+, 46), 164 (10), 151 (10), 136 (41), 123 (22), 108 (22),
104 (100), 103 (5), 77 (9). HRMS (EI, 70 eV): calcd for C16H17O2N
[M+]: m/z = 255.12538; found, 255.12593.
Fig. 2. ORTEP plot of 9a.
Acknowledgement
Financial support by the Alexander-von-Humboldt
foundation (Georg-Forster-scholarship for B.J.) is grate-
fully acknowledged.
References and notes
1. For early reports on erythrina alkaloids, see: (a) Wiesner, K.; Valenta,
Z.; Manson, A. J.; Stonner, F. W. J. Am. Chem. Soc. 1955, 77, 675;
(b) Prelog, V. Angew. Chem. 1957, 69, 33; (c) Prelog, V.; Langemann,
A.; Rodig, O.; Ternbah, M. Helv. Chim. Acta 1959, 42, 1301; (d)
Mondon, A.; Nestler, H. J. Angew. Chem. 1964, 76, 651; (e) Stevens,
R. V.; Wentland, M. P. J. Chem. Soc., Chem. Commun. 1968,
1104.
2. (a) Namsa-aid, A.; Ruchirawat, S. Org. Lett. 2002, 4, 2633; (b) Rigby,
J. H.; Cavezza, A.; Heeg, M. J. J. Am. Chem. Soc. 1998, 120, 3664; (c)
Schwenker, G.; Metz, G. J. Chem. Res. (Synopses) 1985, 1247.
3. Ito, K.; Haruna, M.; Furukawa, H. J. Chem. Soc. Chem. Commun.
1975, 681.
13. CCDC 677344 contains all crystallographic details of this publication
Cambridge Crystallographic Data Centre, 12 Union Road, GB-
Cambridge CB21EZ; Fax: (+44)1223-336-033; or deposit@ccdc.
cam.ac.uk.