Journal of the American Chemical Society
Article
larger emission quantum yields and longer fluorescence
lifetimes.
REFERENCES
■
(1) Milgrom, L. R. The Colours of Life: An Introduction to the
Chemistry of Porphyrins and Related Compounds; Oxford University
Press: New York, 1997.
(2) Gray, H. B.; Winkler, J. R. Electron Transfer in Chemistry; Wiley-
VCH: Weinheim, Germany, 2001; Vol. 3.1.1.
(3) Winkler, J. R.; Gray, H. B. Chem. Rev. 1992, 92, 369−379.
(4) Riggs, A. F. Cur. Opin. Struct. Biol. 1991, 1, 915−921.
(5) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev.
1996, 96, 2841−2888.
(6) Dunford, H. B. Heme Peroxidases; John Wiley: Chichester, U.K.,
1999.
All of the phlorins also display an intriguing supramolecular
chemistry with fluoride anions. Each phlorin can bind 2 equiv
of this halide in highly cooperative fashion. The strength and
cooperative nature of fluoride binding to generate 3H-
(PhlR)·2F− correlate with the ability of the phlorin to stabilize
the build-up of charge. Fluoride binding is manifest in dramatic
changes to the phlorin electronic structure, as demonstrated by
both UV−vis spectroscopy and electrochemistry experiments.
Formation of 3H(PhlR)·2F− is accompanied by increases in
absorptivity and the appearance of strongly absorbing bands
toward the near-IR region (750−900 nm). Fluoride binding
also perturbs the ability of the phlorin to serve as an electron
donor and/or acceptor, as each of the 3H(PhlR)·2F− complexes
is much more easily oxidized than the parent phlorins. Titration
of phlorin with a source of fluoride represents a facile method
to tune the ability of this porphyrinoid to absorb light and
engage in redox chemistry. When coupled with the ability to
modulate the phlorin’s redox and photophysical properties via
synthetic alteration of the macrocycle’s periphery, this general
framework provides a versatile platform with potential
applications in the fields of photocatalysis, electrocatalysis,
anion sensing, and solar-light capture. The modular synthesis of
the phlorin framework, coupled with the flexibility offered by its
supramolecular chemistry with fluoride, distinguishes this
porphyrinoid from more commonly studied porphyrin and
corrole macrocycles. As such, the phlorin is an intriguing
candidate for incorporation into energy-storing schemes and
colorimetric/electrochemical platforms for fluoride detection.
Future efforts in our laboratory will focus on the use of phlorin
frameworks for such endeavors.
(7) Green, B. R.; Durnford, D. G. Annu. Rev. Plant Physiol. 1996, 47,
685−714.
(8) Ben-Shem, A.; Frolow, F.; Nelson, N. Photosynth. Res. 2004, 81,
239−250.
(9) Kerfeld, C. A.; Krogmann, D. W. Annu. Rev. Plant Physiol. 1998,
49, 397−425.
(10) Wasielewski, M. R. Photochem. Photobiol. 1988, 47, 923−929.
(11) Wasielewski, M. R. Chem. Rev. 1992, 92, 435−461.
(12) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.
Chem. Rev. 2010, 110, 6595−6663.
(13) Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W.
Coord. Chem. Rev. 2004, 248, 1363−1379.
(14) Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh,
P. J.; Gordon, K. C.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang,
Q.; Gratzel, M.; Officer, D. L. J. Phys. Chem. C 2007, 111, 11760−
11762.
(15) Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.;
Officer, D. L.; Walsh, P. J.; Gordon, K.; Humphry-Baker, R.;
Nazeeruddin, M. K.; Gratzel, M. J. Phys. Chem. B 2005, 109,
15397−15409.
(16) Papagiannakis, E.; Kennis, J. T. M.; van Stokkum, I. H. M.;
Cogdell, R. J.; van Grondelle, R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
6017−6022.
(17) Cerullo, G.; Polli, D.; Lanzani, G.; De Silvestri, S.; Hashimoto,
H.; Cogdell, R. J. Science 2002, 298, 2395−2398.
(18) Frank, H. A.; Cogdell, R. J. Photochem. Photobiol. 1996, 63,
257−264.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthetic procedures and spectroscopic data. This material is
(19) Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;
Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.;
Gratzel, M. Science 2011, 334, 629−634.
(20) Floriani, C.; Floriani-Moro, R. In The Porphyrin Handbook;
Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New
York, 2000; Vol. 3, pp 405−420.
AUTHOR INFORMATION
■
Corresponding Author
(21) Korobkov, I.; Gambarotta, S.; Yap, G. P. A. Angew. Chem., Int.
Ed. 2002, 41, 3433−3436.
Notes
(22) Harmjanz, M.; Gill, H. S.; Scott, M. J. J. Am. Chem. Soc. 2000,
122, 10476−10477.
The authors declare no competing financial interest.
(23) Harmjanz, M.; Scott, M. J. Inorg. Chem. 2000, 39, 5428−5429.
(24) Bachmann, J.; Hodgkiss, J. M.; Young, E. R.; Nocera, D. G.
Inorg. Chem. 2007, 46, 607−609.
ACKNOWLEDGMENTS
■
We thank Sean Herron (University of Delaware) for assistance
with UV−vis fluoride titration experiments. Research reported
in this publication was supported by an Institutional Develop-
ment Award (IDeA) from the National Institute of General
Medical Sciences of the National Institutes of Health under
Grant P20GM103541. J.R. also thanks the University of
Delaware Research Foundation and the Donors of the
American Chemical Society’s Petroleum Research Fund for
financial support. D.A.L. and Y.-Z.M. were sponsored by the
Division of Chemical Sciences, Geosciences, and Biosciences,
Office of Basic Energy Sciences, U.S. Department of Energy.
NMR and other data were acquired at University of Delaware
using instrumentation obtained with assistance from the NSF
and NIH (Grants NSF-MIR 0421224, NSF-CRIF MU CHE-
0840401 and CHE-0541775, and NIH P20 RR017716).
(25) Pistner, A. J.; Yap, G. P. A.; Rosenthal, J. J. Phys. Chem. C 2012,
116, 16918−16924.
(26) Krattinger, B.; Callot, H. J. Tetrahedron Lett. 1996, 37, 7669−
7702.
(27) Hong, S.-J.; Ka, J.-W.; Won, D.-H.; Lee, C.-H. Bull. Korean
Chem. Soc. 2003, 24, 661−663.
(28) O’Brien, A. Y.; McGann, J. P.; Geier, G. R. J. Org. Chem. 2007,
72, 4084−4092.
(29) Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O’Shea,
D. F.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 1391−1396.
(30) Borbas, K. E.; Chandrashaker, V.; Muthiah, C.; Kee, H. L.;
Holten, D.; Lindsey, J. S. J. Org. Chem. 2008, 73, 3145−3158.
(31) Kalyanasundaram, K. Photochemistry of Polypyridine and
Porphyrin Complexes; Academic Press: San Diego, CA, 1991.
(32) Fonda, H. N.; Gilbert, J. V.; Cormier, R. A.; Sprague, J. R.;
Kamioka, K.; Connolly, J. S. J. Phys. Chem. 1993, 97, 7024−7033.
6606
dx.doi.org/10.1021/ja401391z | J. Am. Chem. Soc. 2013, 135, 6601−6607