Communication
Notes
Scheme 3, upon performing an intermolecular competition ex-
periment under the reaction conditions, a high secondary ki-
netic isotope effect (kH/kD = 1.32) was observed. Interestingly,
an inverse kinetic isotope effect (kH/kD = 0.77) was observed if
the intramolecular competition reaction was performed with
substrate 22. Though accurate interpretation of these isotope
effects is difficult, the results indicate that C–H bond breaking
is not involved in the rate-determining step. The inverse isotope
effect also suggests that the hybridization changes at the ortho
position during the C–H oxidation. Furthermore, the reaction
was not suppressed by the addition of a radical inhibitor, such
as 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), and thus, the
likelihood of a radical mechanism could be ruled out.
The authors declare no competing financial interest.
Acknowledgments
We would like to acknowledge Mrs. Huawei Ma at Porton
(Shanghai) R&D Center for analytical support. We also acknowl-
edge Dr. Dominik Gaertner of Janssen for helpful discussions
during the preparation of this manuscript.
Keywords: C–H activation · Copper · Domino reactions ·
Hydroxylation · Nitrogen heterocycles
[1] For selected reviews on C–H functionalization, see: a) P. B. Arockiam, C.
Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879; b) L. Ackermann, Acc.
Chem. Res. 2014, 47, 281; c) D. A. Colby, R. G. Bergman, J. A. Ellman,
Chem. Rev. 2010, 110, 624; d) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu,
Angew. Chem. Int. Ed. 2009, 48, 5094; Angew. Chem. 2009, 121, 5196; e)
T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; f) O. Daugulis,
H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074; g) J. A. Labinger,
Chem. Rev. 2017, 117, 8483; h) N. Kuhl, M. N. Hopkinson, J. Wencel-
Delord, F. Glorius, Angew. Chem. Int. Ed. 2012, 51, 10236; Angew. Chem.
2012, 124, 10382; i) P. Gandeepan, C.-H. Cheng, Chem. Asian J. 2015, 10,
824; j) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45,
788.
[2] For recent reviews on copper-catalyzed or -mediated C–H bond func-
tionalization assisted by bidentate directing groups, see: a) A. E. Wend-
landt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062;
Angew. Chem. 2011, 123, 11256; b) J. Liu, G. Chen, Z. Tan, Adv. Synth.
Catal. 2016, 358, 1174.
[3] For recent references on the use of O2 as a terminal oxidant, see: a) Y.
Yan, P. Feng, Q.-Z. Zheng, Y.-F. Liang, J.-F. Lu, Y. Cui, N. Jiao, Angew. Chem.
Int. Ed. 2013, 52, 5827; Angew. Chem. 2013, 125, 5939; b) A. N. Campbell,
S. S. Stahl, Acc. Chem. Res. 2012, 45, 851; c) S. E. Allen, R. R. Walvoord, R.
Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234.
[4] a) W.-H. Rao, B.-F. Shi, Org. Chem. Front. 2016, 3, 1028; b) Y. Wu, B. Zhou,
Org. Lett. 2017, 19, 3532.
Scheme 3. Isotope-labeling experiments.
[5] T. Jintoku, K. Nishimura, K. Takaki, Y. Fujiwara, Chem. Lett. 1990, 19, 1687.
[6] a) X. Chen, X.-S. Hao, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006,
128, 6790; b) X. Li, Y.-H. Liu, W.-J. Gu, B. Li, F.-J. Chen, B.-F. Shi, Org. Lett.
2014, 16, 3904; c) S.-Z. Sun, M. Shang, H.-L. Wang, H.-X. Lin, H.-X. Dai,
J.-Q. Yu, J. Org. Chem. 2015, 80, 8843; d) B. K. Singh, R. Jana, J. Org. Chem.
2016, 81, 831; e) M. Shang, M.-M. Wang, T. G. Saint-Denis, M.-H. Li, H.-X.
Dai, J.-Q. Yu, Angew. Chem. Int. Ed. 2017, 56, 5317; Angew. Chem. 2017,
129, 5401.
Conclusions
In conclusion, we developed a new and efficient method for
the construction of 1-(ortho-hydroxyaryl)-1H-indazoles on the
basis of a Cu-catalyzed C(sp2)–H hydroxylation and N–N bond-
formation sequence by using pure oxygen as the terminal
oxidant. We believe this to be the first example of a C–H func-
tionalization/N–N bond-formation cascade for the efficient pro-
duction of 1-(ortho-hydroxyaryl)-1H-indazoles. This protocol
takes advantage of readily accessible ketimine precursors as in-
herent directing groups to facilitate the C(sp2)–H hydroxylation
reaction. Importantly, both nitrogen atoms in the starting mate-
rial are conserved, and the phenol moiety is readily introduced
with only the formation of water as a byproduct. The method
demonstrated herein allows easy access to structurally diverse
1-(ortho-hydroxyaryl)-1H-indazoles and serves as a versatile tool
for the modular synthesis of 1H-indazole-containing medicinal
agents.[15,16] We hope this work will prompt others to explore
the application of the C–H functionalization and N–N bond-
formation methodology with ortho-amino ketimines in the syn-
thesis of indazoles.
[7] C.-y. Chen, G. Tang, F. He, Z. Wang, H. Jing, R. Faessler, Org. Lett. 2016,
18, 1690.
[8] Practical synthesis of 1-(ortho-hydroxyaryl)-1H-indazoles remains elusive.
For the preparation of 1-(ortho-alkoxyaryl)-1H-indazoles, see: a) B. C.
Wray, J. P. Stambuli, Org. Lett. 2010, 12, 4576; b) K. Mitsuhiro, S. Motohiro,
T. Shinji, Eur. J. Org. Chem. 2014, 4720; for biological activities and the
preparation of N-arylindazoles, see: c) C. M. Yates, P. J. Brown, E. L. Stew-
art, C. Patten, R. J. H. Austin, J. A. Holt, J. M. Maglich, D. C. Angell, R. Z.
Sasse, S. J. Taylor, I. J. Uings, R. P. Trump, J. Med. Chem. 2010, 53, 4531;
d) J. M. Salovich, C. W. Lindsley, C. R. Hopkins, Tetrahedron Lett. 2010, 51,
3796.
[9] For recent examples of copper-catalyzed N–N bond formation, see: a) S.
Ueda, H. Nagasawa, J. Am. Chem. Soc. 2009, 131, 15080; b) D.-G. Yu, M.
Suri, F. Glorius, J. Am. Chem. Soc. 2013, 135, 8802; c) H.-F. He, Z.-J. Wang,
W. Bao, Adv. Synth. Catal. 2010, 352, 2905; d) B. Bartels, C. G. Bolas, P.
Cueni, S. Fantasia, N. Gaeng, S. Trita, J. Org. Chem. 2015, 80, 1249; e) J.
Peng, Z. Xie, M. Chen, J. Wang, Q. Zhu, Org. Lett. 2014, 16, 4702; f) Q.
Wu, Y. Zhang, S. Cui, Org. Lett. 2014, 16, 1350; g) K. Sudheendran, D.
Schmidt, W. Frey, J. Conrad, U. Beifuss, Tetrahedron 2014, 70, 1635; h) T.
Hirayama, S. Ueda, T. Okada, N. Tsurue, K. Okuda, H. Nagasawa, Chem.
Eur. J. 2014, 20, 4156; i) H. Xu, S. Ma, Y. Xu, L. Bian, T. Ding, X. Fang, W.
Zhang, Y. Ren, J. Org. Chem. 2015, 80, 1789.
Supporting Information (see footnote on the first page of this
article): Experimental details, characterization data, and NMR
spectra. This material is available free of charge via the Internet at
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim