ACS Medicinal Chemistry Letters
Letter
Dhaon, M. K.; Falls, H. D.; Gao, J.; Grihalde, N.; Hajduk, P.; Hansen,
T. M.; Judd, A. S.; King, A. J.; Klix, R. C.; Larson, K. J.; Lau, Y. Y.;
Marsh, K. C.; Mittelstadt, S. W.; Plata, D.; Rozema, M. J.; Segreti, J. A.;
Stoner, E. J.; Voorbach, M. J.; Wang, X.; Xin, X.; Zhao, G.; Collins, C.
A.; Cox, B. F.; Reilly, R. M.; Kym, P. R.; Souers, A. J. Identification and
Preliminary Characterization of a Potent, Safe, and Orally Efficacious
Inhibitor of Acyl-CoA:Diacylglycerol Acyltransferase 1. J. Med. Chem.
2012, 55, 1751−1757.
(7) Qian, Y.; Wertheimer, S. J.; Ahmad, M.; Cheung, A. W.-H.;
Firooznia, F.; Hamilton, M. M.; Hayden, S.; Li, S.; Marcopulos, N.;
McDermott, L.; Tan, J.; Yun, W.; Guo, L.; Pamidimukkala, A.; Chen,
Y.; Huang, K.-S.; Ramsey, G. B.; Whittard, T.; Conde-Knape, K.; Taub,
R.; Rondinone, C. M.; Tilley, J.; Bolin, D. Discovery of orally active
carboxylic acid derivatives of 2-phenyl-5-trifluoromethyloxazole-4-
carboxamide as potent diacylglycerol acyltransferase-1 inhibitors for
the potential treatment of obesity and diabetes. J. Med. Chem. 2011,
54, 2433−2446.
(8) Birch, A. M.; Birtles, S.; Buckett, L. K.; Kemmitt, P. D.; Smith, G.
J.; Smith, T. J. D.; Turnbull, A. V.; Wang, S. J. Y. Discovery of a potent,
selective, and orally efficacious pyrimidinooxazinyl bicyclooctaneacetic
acid diacylglycerol acyltransferase-1 inhibitor. J. Med. Chem. 2009, 52,
1558−1568 and references cited therein..
(9) Chen, H. C.; Farese, R. V., Jr. Inhibition of triglyceride synthesis
as a treatment strategy for obesity, lessons from DGAT1-deficient
mice. Arterioscler., Thromb., Vasc. Biol. 2005, 25, 482−486.
(10) Smith, S. J.; Cases, S.; Jensen, D. R.; Chen, H. C.; Sande, E.;
Tow, B.; Sanan, D. A.; Raber, J.; Eckel, R. H.; Farese, R. V., Jr. Obesity
resistance and multiple mechanisms of triglyceride synthesis in mice
lacking DGAT. Nat. Genet. 2000, 25, 87−90.
(11) Chen, H. C.; Smith, S. J.; Ladha, Z.; Jensen, D. R.; Ferreira, L.
D.; Pulawa, L. K.; McGuire, J. G.; Pitas, R. E.; Eckel, R. H.; Farese, R.
V., Jr. Increased insulin and leptin sensitivity in mice lacking acyl
CoA:diacylglycerol acyltransferase 1. J. Clin. Invest. 2002, 109, 1049−
1055.
(12) Buhman, K. K.; Smith, S. J.; Stone, S. J.; Repa, J. J.; Wong, J. S.;
Knapp, F. F., Jr.; Burri, B. J.; Hamiltons, R. L.; Abumrad, N. A.; Farese,
R. V., Jr. DGAT1 is not essential for intestinal triacylglycerol
absorption or chylomicron synthesis. J. Biol. Chem. 2002, 277,
25474−25479.
(13) Lee, B.; Fast, A. M.; Zhu, J.; Buhman, K. K. Intestine-specific
expression of acyl CoA:diacylglycerol acyltransferase 1 reverses
resistance to diet-induced hepatic steatosis and obesity in Dgat1−/−
mice. J. Lipid Res. 2010, 51, 1770−1780.
cyclodextrin solution vehicle). At the 100 mg/kg dose, which is
at least 20-fold higher than the dose required for a
pharmacodynamic effect in rats, no adverse effects were
observed following in-life observation, hematology, and clinical
chemistry. Thus, intestinally targeted DGAT1 inhibitors have
the potential to favorably impact postprandial metabolism with
a large therapeutic margin. Interestingly, appreciable plasma
levels of 7 were observed at the highest dose level examined
(AUC0−24h = 9800 nM·h), suggesting that the mechanism(s)
which limits the systemic exposure of 7 can be saturated at
superpharmacological doses.
We have thus demonstrated that intestinally restricted
DGAT1 inhibitors can exert robust effects in rodent and
nonrodent preclinical models of hypertriglyceridemia. While
this single inhibitor cannot definitively establish the contribu-
tion of each DGAT1-expressing tissue to overall energy
metabolism, the profound postprandial effects of an intestinally
restricted inhibitor certainly underscore the importance of
intestinal DGAT1 in modulating nutrient handling. A better
understanding of the role of nongut tissues expressing DGAT1
awaits the development of inhibitors with diverse pharmaco-
kinetic signatures to potentially modulate DGAT1 activity in a
tissue-specific fashion.
ASSOCIATED CONTENT
* Supporting Information
■
S
Characterization data for all new compounds and biological
assay information. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
All authors contributed to the writing of the manuscript.
Notes
The authors declare no competing financial interest.
(14) Hiramine, Y.; Tanabe, T. Characterization of acyl-coenzyme
A:diacylglycerol acyltransferase (DGAT) enzyme of human small
intestine. J. Physiol. Biochem. 2011, 67, 259−264.
(15) Cheng, D.; Iqbal, J.; Devenny, J.; Chu, C. H.; Chen, L.; Dong, J.;
Seethala, R.; Keim, W. J.; Azzara, A. V.; Lawrence, R. M.;
Pelleymounter, M. A.; Hussain, M. M. Acylation of acylglycerols by
acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1). Func-
tional importance of DGAT1 in the intestinal fat absorption. J. Biol.
Chem. 2008, 283, 29802−29811.
(16) Chen, H. C.; Smith, S. J.; Tow, B.; Elias, P. M.; Farese, R. V., Jr.
Leptin modulates the effects of acyl CoA:diacylglycerol acyltransferase
deficiency on murine fur and sebaceous glands. J. Clin. Invest. 2002,
109, 175−181.
ACKNOWLEDGMENTS
■
We thank Brian Jones and Jason Elliott for helpful suggestions
to this manuscript, as well as members of the MAP-ADME
group for profiling support.
REFERENCES
■
(1) Cases, S.; Smith, S. J.; Zheng, Y.-W.; Myers, H. M.; Lear, S. R.;
Sande, E.; Novak, S.; Collins, C.; Welch, C. B.; Lusis, A. J.; Erickson, S.
K.; Farese, R. V., Jr. Identification of a gene encoding an acyl
CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol
synthesis. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 13018−13023.
(2) Cases, S.; Stone, S. J.; Zhou, P.; Yen, E.; Tow, B.; Lardizabal, K.
D.; Voelker, T.; Farese, R. V., Jr. Cloning of DGAT2, a second
mammalian diacylglycerol acyltransferase, and related family members.
J. Biol. Chem. 2001, 276, 38870−38876.
(17) Sengupta, S.; Bhattacharyya, S. Aqueous Heck reaction of amino
acid derived arenediazonium salts: semisynthetic modification of
phenylalanine and tyrosine. Tetrahedron Lett. 1995, 36, 4475−4478.
(18) Coppola, G. M.; Gong, Y. A reliable, high-yielding preparation
of 2,6-dimethyl-4-hydroxybenzaldehyde. Org. Prep. Proced. Int. 2007,
39, 199−202.
(3) Hubbard, B. K.; Enyedy, I.; Gilmore, T. A.; Serrano-Wu, M. H.
Antisense and small-molecule modulation of diacylglycerol acyltrans-
ferase. Expert Opin. Ther. Pat. 2007, 17, 1331−1339.
(19) Curini, M.; Epifano, F.; Montanari, F.; Rosati, O.; Taccone, S.
Ytterbium triflate promoted synthesis of benzimidazole derivatives.
Synlett 2004, 10, 1832−1834.
(4) Birch, A. M.; Buckett, L. K.; Turnbull, A. V. DGAT1 inhibitors as
anti-obesity and anti-diabetic agents. Curr. Opin. Drug Discovery Dev.
2010, 13, 489−96.
́
(20) Beaulieu, P. L.; Hache, B.; von Moos, E. A practical oxone®-
(5) Matsuda, D.; Tomoda, H. DGAT inhibitors for obesity. Curr.
Opin. Invest. Drugs 2007, 8, 836−841.
mediated, high-throughput, solution-phase synthesis of benzimidazoles
from 1,2-phenylenediamines and aldehydes and its application to
preparative scale synthesis. Synthesis 2003, 1683−1692.
(6) For recent examples of DGAT1 inhibitor design, see: Yeh, V. S.;
Beno, D. W.; Brodjian, S.; Brune, M. E.; Cullen, S. C.; Dayton, B. D.;
414
dx.doi.org/10.1021/ml3000512 | ACS Med. Chem. Lett. 2012, 3, 411−415