In the course of our ongoing medicinal chemistry programs,
we required a simple, general, and expedient method to
introduce unsubstituted cyclopropyl groups onto highly func-
tionalized aryl and heteroaryl scaffolds. Historically, function-
alized arylcyclopropanes were prepared by radical substitution
on arenes using cyclopropyl radicals5 or by halogenation of
arylcyclopropanes followed by further derivatization.6 More
recently, arylcyclopropanes have been accessed via cyclopro-
panation of the corresponding vinylarenes under Simmons-Smith
conditions4b,7 or through the use of diazomethane,4a,c sulfonium
ylides,8 or ferrocenyl carbenes.9 However, this approach neces-
sitates the preparation of a styrenyl intermediate which is usually
obtained from an aryl halide. For this reason, arylcyclopropanes
are more commonly prepared directly from the corresponding
halides via cross-coupling reactions with a cyclopropyl metal.
However, cross-coupling of cyclopropylzinc halides under
Negishi conditions2,10 requires strict exclusion of water, whereas
the use of cyclopropylmagnesium bromide in a Kumada-type
coupling4e,11 precludes the presence of numerous functional
groups. Further, due to the lack of reactivity, the Stille coupling
of cyclopropyltin reagents has been utilized only in limited
cases.12 Recently, the transfer of unsubstituted cyclopropyl units
has been efficiently achieved through Suzuki coupling employ-
ing cyclopropylboronic acid,13 but no reaction was observed
with aryl triflates. Finally, the cross-coupling of tricyclopropyl-
indium has also allowed the transfer of unsubstituted cyclopropyl
fragments on arenes, but the reagent has to be prepared in situ
and used as a stock solution.14
Palladium-Catalyzed Cross-Coupling Reaction of
Tricyclopropylbismuth with Aryl Halides and
Triflates
Alexandre Gagnon,* Martin Duplessis, Pamela Alsabeh, and
Francis Barabé
Boehringer Ingelheim Canada Ltd., Research and
DeVelopment, 2100 Cunard Street, LaVal,
Québec, Canada H7S 2G5
agagnon@laV.boehringer-ingelheim.com
ReceiVed NoVember 2, 2007
The palladium-catalyzed cross-coupling reaction of tricy-
clopropylbismuth with aryl and heterocyclic halides and
triflates is reported. The reaction tolerates numerous func-
tional groups and does not require anhydrous conditions. The
method was successfully extended to the cross-coupling of
triethylbismuth.
The chemistry of organobismuth reagents has found wide
application in numerous C-C, C-O, and C-N bond-forming
reactions, in part due to the low toxicity of bismuth salts.15
Although the palladium-catalyzed cross-coupling reaction of
triarylbismuth reagents has been extensively documented,16
Cyclopropanes are commonly found in pharmaceutically
active compounds since they provide unique structural and
electronic properties.1 In addition, cyclopropyl fragments are
generally metabolically more stable toward microsomal oxida-
tion than other aliphatic groups.2,3 Consequently, cyclopropanes
(5) Shono, T.; Nishiguchi, I. Tetrahedron 1974, 30, 2183.
(6) Applequist, D. E.; McKenzie, L. F. J. Org. Chem. 1976, 41, 2262.
(7) (a) Kawabata, N.; Naka, M.; Yamashita, S. J. Am. Chem. Soc. 1976, 98,
2676. (b) Yang, Z.; Lorenz, J. C.; Shi, Y. Tetrahedron Lett. 1998, 39, 8621. (c)
Lorenz, J. C.; Long, J.; Yang, Z.; Xue, S.; Xie, Y.; Shi, Y. J. Org. Chem. 2004,
69, 327.
are often part of structure–activity relationship studies2,4
.
(1) For a review on biological activities of cyclopropane derivatives, see:
Salaün, J. Top. Curr. Chem. 2000, 207, 1. For a general review on cyclopropanes,
see: Patai, S. The Chemistry of the Cyclopropyl Group, Part 2; John Wiley &
Sons: New York, 1987; Vol. 1.
(2) For an example, see: Gagnon, A.; Amad, M. H.; Bonneau, P. R.;
Coulombe, R.; DeRoy, P. L.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Jakalian,
A.; Jolicoeur, E.; Landry, S.; Malenfant, E.; Simoneau, B.; Yoakim, C. Bioorg.
Med. Chem. Lett. 2007, 17, 4437.
(8) (a) Gai, Y.; Julia, M.; Verpeaux, J.-N. Synlett 1991, 56. (b) Cimetière,
B.; Julia, M. Synlett 1991, 271. (c) Gibson, S. E.; Jefferson, G. R.; Prechtl, F.
J. Chem. Soc., Chem. Commun. 1995, 1535.
(9) Du, H.; Yang, F.; Hossain, M. M. Synth. Commun. 1996, 26, 1371.
(10) (a) Campbell, J. B., Jr.; Wawerchak Firor, J.; Davenport, T. W. Synth. Commun.
1989, 19, 2265. (b) Weichert, A.; Bauer, M.; Wirsig, P. Synlett 1996, 473.
(11) (a) Ogle, C. A.; Black, K. C.; Sims, P. F. J. Org. Chem. 1992, 57, 3499.
(b) Limmert, M. E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70, 9364.
(c) Miller, J. A.; Dankwardt, J. W. Tetrahedron Lett. 2003, 44, 1907.
(12) Schmitz, W. D.; Romo, D. Tetrahedron Lett. 1996, 37, 4857.
(13) Wallace, D. J.; Chen, C.-Y. Tetrahedron Lett. 2002, 43, 6987.
(14) Pérez, I.; Pérez Sestelo, J.; Sarandeses, L. A. J. Am. Chem. Soc. 2001,
123, 4155.
(3) For reports on oxidation of cyclopropanes by cytochromes P-450, see:
(a) Suckling, C. J.; Nonhebel, D. C.; Brown, L.; Suckling, K. E.; Seilman, S.;
Wolf, C. R. Biochem. J. 1985, 232, 199. (b) Riley, P.; Hanzlik, R. P. Tetrahedron
Lett. 1989, 30, 3015. (c) Riley, P.; Hanzlik, R. P. Xenobiotica 1994, 24, 1.
(4) For representative examples, see: (a) Turner, W. R.; Suto, M. J.
Tetrahedron Lett. 1993, 34, 281. (b) Cuisiat, S.; Bourdiol, N.; Lacharme, V.;
Newman-Tancredi, A.; Colpaert, F.; Vacher, B. J. Med. Chem. 2007, 50, 865.
(c) Haning, H.; Woltering, M.; Mueller, U.; Schmidt, G.; Schmeck, C.;
Voehringer, V.; Kretschmer, A.; Pernerstorfer, J. Bioorg. Med. Chem. Lett. 2005,
15, 1835. (d) Li, Z.; Chen, W.; Hale, J. J.; Lynch, C. L.; Mills, S. G.; Hajdu, R.;
Keohane, C. A.; Rosenbach, M. J.; Milligan, J. A.; Shei, G.-J.; Chrebet, G.;
Parent, S. A.; Bergstrom, J.; Card, D.; Forrest, M.; Quackenbush, E. J.; Wickham,
L. A.; Vargas, H.; Evans, R. M.; Rosen, H.; Mandala, S. J. Med. Chem. 2005,
48, 6169. (e) Durley, R. C.; Grapperhaus, M. L.; Hickory, B. S.; Massa, M. A.;
Wang, J. L.; Spangler, D. P.; Mischke, D. A.; Parnas, B. L.; Fobian, Y. M.;
Rath, N. P.; Honda, D. D.; Zeng, M.; Connolly, D. T.; Heuvelman, D. M.;
Witherbee, B. J.; Melton, M. A.; Glenn, K. C.; Krul, E. S.; Smith, M. E.; Sikorski,
J. A. J. Med. Chem. 2002, 45, 3891.
(15) For reviews on bismuth chemistry, see: (a) Finet, J.-P. Chem. ReV. 1989,
89, 1487. (b) Freedman, L. D.; Doak, G. O. Chem. ReV. 1982, 82, 15.
(16) (a) Barton, D. H. R.; Ozbalik, N.; Ramesh, M. Tetrahedron 1988, 44,
5661. (b) Rao, M. L. N.; Yamazaki, O.; Shimada, S.; Tanaka, T.; Suzuki, Y.;
Tanaka, M. Org. Lett. 2001, 3, 4103. (c) Shimada, S.; Yamazaki, O.; Tanaka,
T.; Rao, M. L. N.; Suzuki, Y.; Tanaka, M. Angew. Chem., Int. Ed. 2003, 42,
1845. (d) Kang, S.-K.; Ryu, H.-C.; Kim, J. W. Synth. Commun. 2001, 31, 1021.
(e) Kang, S.-K.; Ryu, H.-C.; Hong, Y.-T.; Kim, M.-S.; Lee, S.-W.; Jung, J.-H.
Synth. Commun. 2001, 31, 2365. (f) Moiseev, D. V.; Malysheva, Y. B.; Shavyrin,
A. S.; Kurskii, Y. A.; Gushchin, A. V. J. Organomet. Chem. 2005, 690, 3652.
(g) Rao, M. L. N.; Banerjee, D.; Jadhav, D. N. Tetrahedron Lett. 2007, 48,
2707. (h) Rao, M. L. N.; Banerjee, D.; Jadhav, D. N. Tetrahedron Lett. 2007,
48, 6644.
3604 J. Org. Chem. 2008, 73, 3604–3607
10.1021/jo702377h CCC: $40.75 2008 American Chemical Society
Published on Web 03/26/2008