SCHEME 2. Copper-Catalyzed Cyclization of Amide 4a
feature of the present work is the differentiation of two tethered
aryl iodides for the construction of two different heterocycles.
Both benzoxazole and isoindolinone are considered to be
privileged structures in medicinal chemistry11,12 and a compound
combining these two units has been recently patented.13
The amide 4a was initially chosen to investigate its reactivity
under copper catalysis.14 Due to the presence of two aryl halide
functions, two possible reaction pathways leading to benzodi-
azepinedione 7 or benzoxazole 5a15 could be expected. Interest-
ingly, treatment of compound 4 under conditions previously
optimized for the cyclization of amide 1 (CuI, thiophene-2-
carboxylic acid,16 DMSO, K2CO3, 110 °C) afforded exclusively
the benzoxazole 5a in 87% yield via an intramolecular O-
arylation process (Scheme 2).17 The alternative intramolecular
N-arylation leading to benzodiazepinedione was not observed.
This result implied that the oxidative addition of ring A aryl
iodide to Cu(I) occurred preferentially over the ring B coun-
terpart, although ring B is electronically poorer than A and
should thus be more prone to oxidative addition.18 This
regioselectivity is opposite to that observed in the cyclization
of 1. This selective formation of benzoxazole turned out to be
quite general and a range of amides 4 with different R1 and R2
groups, including aliphatic and aromatic ones, readily cyclized
to benzoxazoles 5 in good to excellent yields (Table 1).
However, a low yield of benzoxazole was obtained when R2 )
H and Ph (5b, 5f). Except for 5b and 5d, all other precursors
were prepared by Ugi-4CR from readily accessible aldehydes,
anilines, isocyanides, and carboxylic acids.
The NMR spectra of compounds 5 were rather difficult to
interpret. For example, compound 5a exhibited three different
1
sets of signals in its H NMR spectrum. Variable-temperature
NMR experiments revealed the coalescence of two of them at
348 K. However, a full coalescence was not observed even at
372 K. The presence of rotamers and atropisomers, resulting
from a hindered rotation around the N-CO (a) and Caromatic-CO
bond (b),19 respectively, can be advanced to explain the observed
phenomena.20 Indeed, compound 5, having two rotationally
restricted C-C bonds and one chiral sp3 center, can exist as a
mixture of up to four observable diastereomers on the NMR
time scale (Figure 1).
(11) Recent examples of biologically actives benzoxazoles: (a) Potashman,
M. H.; Bready, J.; Coxon, A.; DeMelfi, T. M., Jr.; DiPietro, L.; Doerr, N.;
Elbaum, D.; Estrada, J.; Gallant, P.; Germain, J.; Gu, Y.; Harmange, J.-C.;
Kaufman, S. A.; Kendall, R.; Kim, J. L.; Kumar, G. L.; Long, A. M.; Neervannan,
S.; Patel, V. F.; Polverino, A.; Rose, P.; van der Plas, S.; Whittington, D.; Zanon,
R.; Zhao, H. J. Med. Chem. 2007, 50, 4351–4373. (b) Easmon, J.; Purstinger,
G.; Thies, K.-S.; Heinisch, G.; Hofmann, J. J. Med. Chem. 2006, 49, 6343–
6350. (c) Sondhi, S. M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Bioorg.
Med. Chem. 2006, 14, 3758–3765. (d) Vinsova, J.; Cermakova, K.; Tomeckova,
A.; Ceckova, M.; Jampilek, J.; Cermak, P.; Kunes, J.; Dolezal, M.; Staud, F.
Bioorg. Med. Chem. 2006, 14, 5850–5865. (e) Huang, S.-T.; Hsei, I.-J.; Chen,
C. Bioorg. Med. Chem. 2006, 14, 6106–6119. (f) Yoshida, S.; Shiokawa, S.;
Kawano, K.-I.; Ito, T.; Murakami, H.; Suzuki, H.; Sato, Y. J. Med. Chem. 2005,
48, 7075–7079.
The presence of an aryl iodide function in 5 provided a handle
for further structural elaboration. One possible transformations
offered by structure 5sis the direct intramolecular C-arylation
(12) Recent examples of biologically actives isoindolinones: (a) Lee, S.;
Shinji, C.; Ogura, K.; Shimizu, M.; Maeda, S.; Sato, M.; Yoshida, M.; Hashimoto,
Y.; Miyachi, H. Bioorg. Med. Chem. Lett. 2007, 17, 4895–4900. (b) Hardcastle,
I. R.; Ahmed, S. U.; Atkins, H.; Farnie, G.; Golding, B. T.; Griffin, R. J.;
Guyenne, S.; Hutton, C.; Kallblad, P.; Kemp, S. J.; Kitching, M. S.; Newell,
D. R.; Norbedo, S.; Northen, J. S.; Reid, R. J.; Saravanan, K.; Willems, H. M. G.;
Lunec, J. J. Med. Chem. 2006, 49, 6209–6221. (c) Hardcastle, I. R.; Ahmed,
S. U.; Atkins, H.; Calvert, A. H.; Curtin, N. J.; Farnie, G.; Golding, B. T.; Griffin,
R. J.; Guyenne, S.; Hutton, C.; Källblad, P.; Kemp, S. J.; Kitching, M. S.; Newell,
D. R.; Norbedo, S.; Northen, J. S.; Reid, R. J.; Saravanan, K.; Willems, H. M. G.;
Lunec, J. Bioorg. Med. Chem. Lett. 2005, 15, 1515–1520. (d) Curtin, M. L.;
Frey, R. R.; Heyman, H. R.; Sarris, K. A.; Steiman, D. H.; Holmes, J. H.;
Bousquet, P. F.; Cunha, G. A.; Moskey, M. D.; Ahmed, A. A.; Pease, L. J.;
Glaser, K. B.; Stewart, K. D.; Davidsen, S. K.; Michaelides, M. R. Bioorg. Med.
Chem. Lett. 2004, 14, 4505–4509.
3
of the benzylic Csp carbon. This transformation was therefore
investigated.
To our delight, treatment of a DMSO solution of compound
5a in the presence of Pd(OAc)2 (5 mol %) and KOAc (2 equiv)
at 120 °C afforded benzoxazolylisoindolinones 6a in 35% yield.
3
Although palladium-catalyzed arylation of Csp R to a carbonyl
group is well-established,21 direct arylations of methyleneben-
zoxazoles have, to the best of our knowledge, not been docu-
mented previously.10
Encouraged by this result, we set out to optimize the reaction
conditions by varying the ligand, the base, the solvent, and
the temperature. The results are summarized in Table 2. As
expected, the ligand structure has a dramatic effect on the
reaction efficiency, with PCy3 and ligand L1 (Figure 2) being
the most efficient (entry 5 and 11). The ideal temperature for
this transformation was found to be 90 °C. At lower tempera-
tures (50–90 °C), the reaction became sluggish (entry 2–4).
DMSO proved to be a better solvent than DMF, whereas dioxane
(13) (a) Ethyl 5-(2-(3-chloro-2-fluorophenyl)-1-hydroxy-3-oxoisoindolin-1-
yl)benzo[d]oxazol-2-ylcarbamate has been reported to modulate kinases activity;
see: Anand, N. K.; Blazey, C. M.; Bowles, O. J.; Bussenius, J.; Costanzo, S.;
Curtis, J. K.; Dubenko, L.; Kennedy, A. R.; Defina, S. C.; Kim, A. I.; Manalo,
J.-C.; Peto, C.; Rice, K. D.; Tsang, T. H.; Joshi, A. A. WO/2005/112932 A2,
December 1, 2005. For reviews on the benefit of combining pharmacophores
for drug development see: (b) Morphy, R.; Rankovic, Z. J. Med. Chem. 2005,
48, 6523–6543. (c) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem.,
Int. Ed. 1998, 37, 2754–2794.
(14) Pioneer contribution: Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F J. Am.
Chem. Soc. 1998, 120, 12459. For reviews on copper-mediated bond formation,
see: (a) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004, 248, 2337–
2364. (b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–
5449. (c) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428–2439.
(15) (a) Altenhoff, G.; Glorius, F. AdV. Synth. Catal. 2004, 346, 1661–1664.
(b) Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802–1808.
(16) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748–
2749.
(19) Siddall, T. H.; Garner, R. H. Can. J. Chem. 1966, 44, 2387–2394.
(20) For reviews see: (a) Clayden, J.; Vallverdu, L.; Helliwell, M. Org.
Biomol. Chem. 2006, 4, 2106–2118. (b) Clayden, J. Chem. Commun. 2004, 127–
135. (c) Clayden, J. Tetrahedron Symposium-in-print on axially Chiral Amides.
Tetrahedron 2004, 60, 4325–4558.
(17) The reaction proceeded at 60 °C by replacing the thiophene-2-carboxylic
acid with proline.
(21) (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234–245.
(b) Gaertzen, O.; Buchwald, S. L. J. Org. Chem. 2002, 67, 465–475. Benzylic
arylation: (c) Inoh, J.-I.; Satoh, T.; Pivsa-Art, S.; Miura, M.; Nomura, M.
Tetrahedron Lett. 1998, 39, 4673–4676. (d) Dong, C.-G.; Hu, Q.-S. Angew.
Chem., Int. Ed. 2006, 45, 2289–2292. (e) Beaudoin, O.; Herrbach, A.; Gueritte,
F. Angew. Chem., Int. Ed. 2003, 42, 5736–5740. (f) Catellani, M.; Motti, E.;
Ghelli, S. Chem. Commun. 2000, 2003–2004. (g) Ren, H.; Knochel, P. Angew.
Chem., Int. Ed. 2006, 45, 3462–3465.
(18) The mechanism of Ullmann-type reaction is not well-established;
therefore alternative explanations could account for the observed regioselectivity.
For recent discussion concerning the mechanism of copper-catalyzed arylation
of nucleophiles, see: (a) Ouali, A.; Spindler, J.-F.; Jutand, A.; Taillefer, M. AdV.
Synth. Catal. 2007, 349, 1906–1916. (b) Ouali, A.; Taillefer, M.; Spindler, J.-
F.; Jutand, A. Organometallics 2007, 26, 65–74.
J. Org. Chem. Vol. 73, No. 9, 2008 3601