1374
XIAOPING ZHAO et al.
1
The physicochemical parameters of the azometh-
ines prepared are listed in Table 1.
tions at 3460 3410 cm . In the spectra of the other
compounds, this band is absent.
1
In the H NMR spectra, the N=C H signal is
The structures of the compounds were confirmed
by IR and H NMR spectroscopy (Table 2). The IR
1
observed at 8.2 8.4 ppm, and the OH signal, at 13.6
15.0 ppm.
spectra of all the compounds contain a strong absorp-
1
tion band of the >C=N group at 1660 1610 cm .
The bactericidal activity of the compounds was
studied with test cultures of E. Coli, B. Subtilis,
and S. Aureus. The activity was evaluated by the di-
ameter of the inhibition zone (cm) arising 48 h after
Its position only slightly depends on the structure of
the compound and on substituents in the phenyl ring
of the benzaldehyde moiety. The spectra of e h also
contrain a well-defined band of OH stretching vibra-
6
1
introducing into the cultural medium 2 10 g ml
Table 2. Spectroscopic characteristics of the Schiff bases
1
Compound
IR spectrum, , cm
1H NMR spectrum, , ppm
a
2931, 1644, 1040, 832
8.265 (1H, N=CH ); 7.765, 7.423, 7.2204, 7.024, 6.906 (8H,
C=CH ); 3.536 (1H, N CH2 ); 2.879 [1H, CH(CH3)2]; 2.858,
2.303, 1.967, 1.794, 1.579 (10H, CH2 ); 1.485 (1H, >CH );
1.271, 1.258, 1.084 (9H, CH3)
b
c
d
e
f
2938, 1645, 1086, 823
8.224 (1H, N=CH ); 7.692, 7.391, 7.223, 7.032, 6.910 (7H,
C=CH ); 3.527 (1H, N CH2 ); 2.898 [1H, CH(CH3)2]; 2.851,
2.319, 1.939, 1.790, 1.528 (10H, CH2 ); 1.439 (1H, >CH );
1.272, 1.265, 1.008 (9H, CH3)
2944, 1645, 1036, 825
8.207 (1H, N CH2 ); 7.725, 7.246, 7.225, 7.026, 6.938 (7H,
C=CH ); 3.884 (1H, N CH2 ); 3.868 (3H, OCH3); 3.541 [1H,
CH(CH3)2]; 3.389, 2.902, 2.367, 1.743, 1.715 (10H, CH2 );
1.498 (1H, >CH ); 1.475, 1.298, 1.086 (9H, CH3)
2941, 1650, 1229, 831
8.249 (1H, N CH2 ); 7.763, 7.282, 7.227, 7.091, 6.934 (7H,
C=CH ); 3.547 (1H, N CH2 ); 2.919 [1H, CH(CH3)2]; 2.879,
2.315, 1.847, 1.724, 1.456 (10H, CH2 ); 1.456 (1H, >CH );
1.309, 1.281, 1.092 (9H, CH3)
3442, 2937, 1628, 1153, 759
3423, 2935, 1618, 1330, 1098
3459, 2935, 1639, 1991, 826
3452, 2934, 1629, 1076, 832
13.619 (1H, OH); 8.336 (1H, N CH2 ); 7.349, 7.300, 7.209,
7.023, 6.879 (6H, C=CH ); 3.530 (1H, N CH2 ); 2.864 [1H,
CH(CH3)2]; 2.313, 1.837, 1.806, 1.585, 1.503 (10H, CH2 );
1.412 (1H, >CH ); 1.281, 1.243, 1.079 (9H, CH3)
14.982 (1H, OH); 8.342 (1H, N CH2 ); 7.282, 7.204, 7.031,
6.979, 6.914 (6H, C=CH ); 3.523 (1H, N CH2 ); 2.843 [1H,
CH(CH3)2]; 2.325, 1.877, 1.854, 1.565, 1.421 (10H, CH2 );
1.410 (1H, >CH ); 1.279, 1.234, 1.099 (9H, CH3)
g
h
13.572 (1H, OH); 8.268 (1H, N CH2 ); 7.283, 7.234, 7.024,
7.004, 6.904 (6H, C=CH ); 3.538 (1H, N CH2 ); 2.861 [1H,
CH(CH3)2]; 2.333, 1.835, 1.807, 1.579, 1.435 (10H, CH2 );
1.402 (1H, >CH ); 1.274, 1.257, 1.073 (9H, CH3)
14.167 (1H, OH); 8.369 (1H, N CH2 ); 7.282, 7.172, 7.011,
6.943, 6.799 (6H, C=CH ); 3.913 (3H, OCH3); 3.549 (1H,
N CH2 ); 2.842 [1H, CH(CH3)2]; 2.308, 1.802, 1.630, 1.500,
1.448 (10H, CH2 ); 1.414 (1H, >CH ); 1.273, 1.243, 1.073
(9H, CH3)
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 80 No. 8 2007