Letters
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 9 2637
Colau, D.; Parmentier, N.; Boon, T.; van den Eynde, B. Evidence for
a tumoral immune resistance mechanism based on tryptophan degrada-
tion by indoleamine 2,3-dioxygenase. Nat. Med. 2003, 9, 1269–1274.
(5) Okamoto, A.; Nikaido, T.; Ochiai, K.; Takakura, S.; Saito, M.; Aoki,
Y.; Ishii, N.; Yanaihara, N.; Yamada, K.; Takikawa, O.; Kawaguchi,
R.; Isonishi, S.; Tanaka, T.; Urashima, M. Indoleamine 2,3-dioxyge-
nase serves as a marker of poor prognosis in gene expression profiles
of serous ovarian cancer cells. Clin. Cancer Res. 2005, 11, 6030–
6039.
(6) Brandacher, G.; Perathoner, A.; Ladurner, R.; Schneeberger, S.; Orbist,
P.; Winkler, C.; Werner, E. R.; Werner-Felmayer, G.; Weiss, H. G.;
Gobel, G.; Margreiter, R.; Konigsrainer, A.; Fuchs, D.; Amberger, A.
Prognostic value of indoleamine 2,3-dioxygenase expression in
colorectal cancer: effect on tumor-infiltrating T cells. Clin. Cancer
Res. 2006, 12, 1144–1151.
(7) Muller, A. J.; Duhadaway, J. B.; Donover, P. S.; Sutanto-Ward, E.;
Prendergast, G. C. Inhibition of indoleamine 2,3-dioxygenase, an
immunoregulatory target of the cancer suppression gene Bin1,
potentiates cancer chemotherapy. Nat. Med. 2005, 11, 312–319.
(8) Zheng, X.; Koropatnick, J.; Li, M.; Zhang, X.; Ling, F.; Ren, X.; Hao,
X.; Sun, H.; Vladau, C.; Franek, J. A.; Febg, B.; Urquhart, B. L.;
Zhong, R.; Freeman, D. J.; Garcia, B.; Min, W.-P. Reinstalling
antitumor immunity by inhibiting tumor-derived immunosuppressive
molecule IDO through RNA interference. J. Immunol. 2006, 177,
5639–5646.
(9) Muller, A. J. and Scherle, P. A. Targeting the mechanisms of tumoral
immune tolerance with small-molecule inhibitors. Nat. ReV. Cancer
2006, 6, 613–625.
(10) Pereira, A.; Vottero, E.; Roberge, M.; Mauk, A. G.; Andersen, R. J.
Indoleamine 2,3-dioxygenase inhibitors from the northeastern Pacific
marine hydroid GarVeia annulata. J. Nat. Prod. 2006, 69, 1496–1499.
(11) Brastianos, H. C.; Vottero, E.; Patrick, B. O.; Van Soest, R.; Matainaho,
T.; Mauk, A. G.; Andersen, R. J. Exiguamine A, an indoleamine 2,3-
dioxygenase inhibitor isolated from the marine sponge Neopetrosia
exigua. J. Am. Chem. Soc. 2006, 128, 16046–16047.
to another 7-fold reduction in potency compared with 9.
Nevertheless, compound 13 is still more potent than 1.
Combining the C-5 hydantoin substituent in 20 with a Cbz-
protected ethylamine side chain at C-3 to give compound 21
produced an analogue that was only slightly less active than
indole quinone 19. Replacing the Cbz group in 21 with a
phenylpropionamide residue to give 25 produced no change in
potency, as exected. Removing the Cbz-protecting group in 21
to liberate a C-3 ethylamine side chain and at the same time
removing the methyl ester fragment from the hydantoin moiety
by decarboxylation to give 22, gave an analogue that recaptured
the potency of indolequinone 19. The Diels-Alder adduct 24,
which has the C-5 and C-6 positions blocked with a fused
aromatic ring, was completely inactive. It is noteworthy that a
combination of the hydantoin and tryptaminequinone substruc-
tures present in the natural product exiguamine A (3) was
required to give the potent synthetic analogue 22.
In summary, starting from the lead structure of the sponge
natural product exiguamine A (3), we have prepared the simpler
synthetic analogue 22 that is a potent uncompetitive in vitro
inhibitor of IDO. Although 22 is somewhat less active than the
natural product 3, it is readily accessible via synthesis and is
roughly 300-fold more potent than 1, which is currently
undergoing development for clinical evaluation.9 Compound 22
should be a useful new tool to study IDO in vitro and also for
whole cell and animal model evaluations of the potential of IDO
as a drug target in cancer and other human diseases.
(12) Kita, Y. Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T. Total
synthesis of discorhabdin-C: a general aza spiro dienone formation
from O-silylated derivatives using a hypervalent iodine reagent. J. Am.
Chem. Soc. 1992, 114, 2175–2180.
Acknowledgment. Financial support was provided by
NSERC (R.J.A.), NCIC (R.J.A.), CIHR (A.G.M.), and a CRC
Chair (A.G.M.).
(13) Tatsuta, K.; Imamura, K.; Itoh, S.; Kasai, S. The first total synthesis
Supporting Information Available: Synthetic procedures and
1H NMR spectra for compounds 9, 13, 19, 20, 21, 22, 24, and 25.
This material is available free of charge via the Internet at http://
pubs.acs.org.
of lymphostin. Tehrahedron Lett. 2004, 45, 2847–2850.
(14) Davarani, S. S. H.; Nematollahi, D.; Shamsipur, M.; Najafi, N. M.;
Masoumi, L.; Ramyar, S. Electrochemical oxidation of 2,3-dimeth-
ylhydroquinone in the presence of 1,3-dicarbonyl compounds. J. Org.
Chem. 2006, 71, 2139–2142.
(15) Li, J. P. Synthesis of 1-substituted and 1,3-disubstituted 5-hydanto-
References
incarboxylates. J. Org. Chem. 1975, 40, 3414–3417.
(1) Shimizu, T.; Nomiyama, S.; Hirata, F.; Hayaishi, O. Indoleamine 2,3-
dioxygenase: purification and some properties. J. Biol. Chem. 1978,
253, 4700–4706.
(16) Dodge, J. A.; Bain, J. D.; Chamberlin, A. R. Regioselective synthesis
of substituted rubrenes. J. Org. Chem. 1990, 55, 4190–4198.
(17) Takihawa, O.; Kuroiwa, T.; Yamazaki, F.; Kido, R. Mechanism of
interferon-gamma action: characterization of indoleamine 2,3-dioxy-
genase in cultured human cells induced by interferon-gamma and
evaluation of the enzyme-mediated tryptophan degradation in its
anticellular activity. J. Biol. Chem. 1988, 263, 2041–2048.
(18) Austin, C. J. D.; Astelbauer, F.; Kosim-Satyaputra, P.; Ball, H. J.;
Willows, R. D.; Jamie, J. F.; Hunt, N. H. Mouse and human
indoleamine 2,3-dioxygenase display some distinct biochemical and
10.1007/s00726-008-0037-6.
(2) Munn, D. H.; Zhou, M.; Attwood, J. T. Prevention of allogenic fetal
rejection by tryptophan catabolism. Science 1998, 281, 1191–1193.
(3) Munn, D. H.; Shafizadeh, E.; Attwood, J. T.; Bondarev, I.; Pashine,
A.; Mellor, A. L. Inhibition of T cell proliferation by macrophage
tryptophan catabolism. J. Exp. Med. 1999, 189, 1363–1372.
(4) (a) Muller, A. J.; Prendergast, G. C. Marrying immunotherapy with
chemotherapy: why say IDO? Cancer. Res. 2005, 65, 8065–8068. (b)
Muller, A. J.; Malachhowski, W. P.; Prendergast, G. C. Indoleamine
2,3-dioxygenase in cancer: targeting pathological immune tolerance
with small-molecule inhibitors. Expert Opin. Ther. Targets 2005, 9,
831–849. (c) Uyttenhove, C.; Pilotte, L.; Theate, I.; Stroobant, V.;
JM800143H