Organic Letters
Letter
Robeyns, K.; Riant, O. Angew. Chem., Int. Ed. 2013, 52, 1785.
(h) Takeda, M.; Shintani, R.; Hayashi, T. J. Org. Chem. 2013, 78, 5007.
(i) Pace, V.; Rae, J. P.; Harb, H. Y.; Procter, D. J. Chem. Commun.
2013, 49, 5150. (j) Pace, V.; Rae, J. P.; Procter, D. J. Org. Lett. 2014,
16, 476. For transition-metal-free enantioselective silylation, see:
(k) O’Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7712.
(2) For Pd-catalyzed enantioselective silylations, see: (a) Hayashi, T.;
Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 5579.
(b) Matsumoto, Y.; Ohno, A.; Hayashi, T. Organometallics 1993, 12,
4051. (c) Matsumoto, Y.; Hayashi, T.; Ito, Y. Tetrahedron 1994, 50,
335.
(c) Voyer, N.; Roby, J. Tetrahedron Lett. 1995, 36, 6627. (d) Faibish,
N. C.; Park, Y. S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1997, 119, 11561.
(e) Barberis, C.; Voyer, N.; Roby, J.; Chenard, S.; Tremblay, M.;
́
Labrie, P. Tetrahedron 2001, 57, 2965. (f) Stead, D.; Carbone, G.;
O’Brien, P.; Campos, K. R.; Coldham, I.; Sanderson, A. J. Am. Chem.
Soc. 2010, 132, 7260. (g) Sheikh, N. S.; Leonori, D.; Barker, G.; Firth,
J. D.; Campos, K. R.; Meijer, A. J. H. M.; O’Brien, P.; Coldham, I. J.
Am. Chem. Soc. 2012, 134, 5300.
(11) (a) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc. 2004, 126,
15666. (b) Kells, K. W.; Chong, J. M. Org. Lett. 2003, 5, 4215.
(12) Mita, T.; Sugawara, M.; Hasegawa, H.; Sato, Y. J. Org. Chem.
2012, 77, 2159.
(13) (a) Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Angew. Chem., Int.
Ed. 2011, 50, 1393. (b) Mita, T.; Sato, Y. J. Synth. Org. Chem., Jpn.
2013, 71, 1163.
(14) Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Org. Lett. 2012, 14,
6202.
(15) Emslery, J. The Elements, 3rd ed.; Oxford University Press: New
York, 1998.
(16) Chen, I.-H.; Kanai, M.; Shibasaki, M. Org. Lett. 2010, 12, 4098.
(17) No. CCDC992529 (compound 2a).
(18) Hodgson, D. M.; Kloesges, J.; Evans, B. Synthesis 2009, 1923.
We also prepared an authentic sample of (S)-5a from (S)-phenyl
glycine methyl ester·HCl (see the Supporting Information (SI) for
details).
(19) In our previous work (ref 12), (S)-N-tert-butylsulfonyl-α-SnBu3-
benzylamine was prepared according to Chong’s procedure (ref 11a),
and carboxylation of this amido stannane gave the corresponding
product with inversion of the stereogenic center. Thus, we concluded
that carboxylation of N-tert-butylsulfonyl-α-amido stannanes pro-
ceeded in a stereoinvertive manner. However, we doubt the
inconsistency of the stereochemical reaction mode between the
reaction of α-amino silane (retention) and α-amino stannane
(inversion). Therefore, we prepared several N-tert-butylsulfonyl-α-
amido stannanes according to Chong’s procedure in order to clarify
the absolute configuration of the α-amido stannanes. Among them, N-
tert-butylsulfonyl-α-SnMe3-benzylamine was obtained as a single
crystal (98% ee), and X-ray crystallographic analysis revealed that
the absolute configuration was not S but R (No. CCDC992530, Flack
parameter = −0.008(14)). Carboxylation of the genuine (R)-N-tert-
butylsulfonyl-α-SnMe3-benzylamine gave the product with retention of
the stereogenic center, and the absolute configuration of the product
was unambiguously determined by comparison of the reported optical
rotation value (ref 18). Thus, our previously reported carboxylation of
N-tert-butylsulfonyl-α-amido stannanes is also considered to proceed
in a stereoretentive manner similar to that in the case of N-tert-
butylsulfonyl-α-amido silanes (see the SI for details).
(3) For a review on silylboron reagents, see: (a) Oestreich, M.;
Hartmann, E.; Mewald, M. Chem. Rev. 2013, 113, 402. For a
convenient synthesis of silylboron reagents, see: (b) Suginome, M.;
Matsuda, T.; Ito, Y. Organometallics 2000, 19, 4647.
(4) (a) Vyas, D. J.; Frohlich, R.; Oestreich, M. Org. Lett. 2011, 13,
̈
2094. During the preparation of this manuscript, a similar reaction of
the Cu(I)−NHC complex-catalyzed enantioselective addition of
silicon nucleophiles to imines has been reported by Oestreich. See:
(b) Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M. Angew. Chem.,
Int. Ed. 2014, 53, 4964. For a diastereoselective method using chiral
N-tert-butylsulfinylimines, see: (c) Ballweg, D. M.; Miller, R. C.; Gray,
D. L.; Scheidt, K. A. Org. Lett. 2005, 7, 1403.
(5) For carboxylations of C(sp3)−Si bonds by a fluoride, see:
(a) Ohno, M.; Tanaka, H.; Komatsu, M.; Ohshiro, Y. Synlett 1991,
919. (b) Singh, R. P.; Shreeve, J. M. Chem. Commun. 2002, 1818.
(c) Babadzhanova, L. A.; Kirij, N. V.; Yagupolskii, Y. L. J. Fluorine
Chem. 2004, 125, 1095. (d) Petko, K. I.; Kot, S. Y.; Yagupolskii, L. M.
J. Fluorine Chem. 2008, 129, 301. (e) Mita, T.; Michigami, K.; Sato, Y.
Org. Lett. 2012, 14, 3462. (f) Mita, T.; Michigami, K.; Sato, Y. Chem.
Asian J. 2013, 8, 2970.
For fluoride-mediated carboxylations of
C(sp2)−Si bonds, see: (g) Effenberger, F.; Spiegler, W. Chem. Ber.
1985, 118, 3900. (h) Yonemoto-Kobayashi, M.; Inamoto, K.; Kondo,
Y. Chem. Lett. 2014, 43, 477. For fluoride-mediated carboxylations of
C(sp)−Si bonds, see: (i) Yonemoto-Kobayashi, M.; Inamoto, K.;
Tanaka, Y.; Kondo, Y. Org. Biomol. Chem. 2013, 11, 3773.
(6) For representative reviews on the synthesis of chiral α-amino
acids, see: (a) Williams, R. M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889.
(b) Duthaler, R. O. Tetrahedron 1994, 50, 1539. (c) Kreuzfeld, H. J.;
Dobler, C.; Schmidt, U.; Krause, H. W. Amino Acids 1996, 11, 269.
̈
(d) Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry
1998, 9, 3517. (e) Maruoka, K.; Ooi, T. Chem. Rev. 2003, 103, 3013.
(f) Ma, J.-A. Angew. Chem., Int. Ed. 2003, 42, 4290. (g) Beak, P.;
Johnson, T. A.; Kim, D. D.; Lim, S. H. Top. Organomet. Chem. 2003, 5,
́
139. (h) Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584.
(7) For recent reviews on CO2 incorporation reactions, see:
(a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107,
2365. (b) Mori, M. Eur. J. Org. Chem. 2007, 4981. (c) Correa, A.;
Martin, R. Angew. Chem., Int. Ed. 2009, 48, 6201. (d) Riduan, S. N.;
Zhang, Y. Dalton Trans. 2010, 39, 3347. (e) Boogaerts, I. I. F.; Nolan,
S. P. Chem. Commun. 2011, 47, 3021. (f) Ackermann, L. Angew. Chem.,
Int. Ed. 2011, 50, 3842. (g) Zhang, Y.; Riduan, S. N. Angew. Chem., Int.
Ed. 2011, 50, 6210. (h) Cokoja, M.; Bruckmeier, C.; Rieger, B.;
Herrmann, W. A.; Kuhn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.
̈
(i) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
(j) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956. (k) Zhang,
L.; Hou, Z. Chem. Sci. 2013, 4, 3395. (l) Kielland, N.; Whiteoak, C. J.;
Kleij, A. W. Adv. Synth. Catal. 2013, 355, 2115. (m) Cai, X.; Xie, B.
Synthesis 2013, 45, 3305.
(8) For L-glutamic acid fermentation, see: Kinoshita, S.; Udaka, S.;
Shimono, M. J. Gen. Appl. Microbiol. 1957, 3, 193.
(9) (a) Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220.
(b) Park, Y. S.; Beak, P. J. Org. Chem. 1997, 62, 1574. (c) Jeanjean, F.;
́
Fournet, G.; Bars, D. L.; Gore, J. Eur. J. Org. Chem. 2000, 1297.
(d) Coeffard, V.; Beaudet, I.; Evain, M.; Grognec, E. L.; Quintard, J.-P.
Eur. J. Org. Chem. 2008, 3344. (e) Lumbroso, A.; Beaudet, I.; Toupet,
L.; Grognec, E. L.; Quintard, J.-P. Org. Lett. 2013, 15, 160.
(10) (a) Kerrick, S. T.; Beak, P. J. Am. Chem. Soc. 1991, 113, 9708.
(b) Schlosser, M.; Limat, D. J. Am. Chem. Soc. 1995, 117, 12342.
D
dx.doi.org/10.1021/ol501143c | Org. Lett. XXXX, XXX, XXX−XXX